Extensions 1→N→G→Q→1 with N=D4xC23 and Q=C2

Direct product G=NxQ with N=D4xC23 and Q=C2
dρLabelID
D4xC46184D4xC46368,38

Semidirect products G=N:Q with N=D4xC23 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC23):1C2 = D4:D23φ: C2/C1C2 ⊆ Out D4xC231844+(D4xC23):1C2368,14
(D4xC23):2C2 = D4xD23φ: C2/C1C2 ⊆ Out D4xC23924+(D4xC23):2C2368,31
(D4xC23):3C2 = D4:2D23φ: C2/C1C2 ⊆ Out D4xC231844-(D4xC23):3C2368,32
(D4xC23):4C2 = D8xC23φ: C2/C1C2 ⊆ Out D4xC231842(D4xC23):4C2368,24
(D4xC23):5C2 = C4oD4xC23φ: trivial image1842(D4xC23):5C2368,40

Non-split extensions G=N.Q with N=D4xC23 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC23).1C2 = D4.D23φ: C2/C1C2 ⊆ Out D4xC231844-(D4xC23).1C2368,15
(D4xC23).2C2 = SD16xC23φ: C2/C1C2 ⊆ Out D4xC231842(D4xC23).2C2368,25

׿
x
:
Z
F
o
wr
Q
<