Copied to
clipboard

G = D4⋊D23order 368 = 24·23

The semidirect product of D4 and D23 acting via D23/C23=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4⋊D23, C232D8, D922C2, C4.1D46, C46.7D4, C92.1C22, C23⋊C81C2, (D4×C23)⋊1C2, C2.4(C23⋊D4), SmallGroup(368,14)

Series: Derived Chief Lower central Upper central

C1C92 — D4⋊D23
C1C23C46C92D92 — D4⋊D23
C23C46C92 — D4⋊D23
C1C2C4D4

Generators and relations for D4⋊D23
 G = < a,b,c,d | a4=b2=c23=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >

4C2
92C2
2C22
46C22
4D23
4C46
23C8
23D4
2D46
2C2×C46
23D8

Smallest permutation representation of D4⋊D23
On 184 points
Generators in S184
(1 75 25 66)(2 76 26 67)(3 77 27 68)(4 78 28 69)(5 79 29 47)(6 80 30 48)(7 81 31 49)(8 82 32 50)(9 83 33 51)(10 84 34 52)(11 85 35 53)(12 86 36 54)(13 87 37 55)(14 88 38 56)(15 89 39 57)(16 90 40 58)(17 91 41 59)(18 92 42 60)(19 70 43 61)(20 71 44 62)(21 72 45 63)(22 73 46 64)(23 74 24 65)(93 150 123 172)(94 151 124 173)(95 152 125 174)(96 153 126 175)(97 154 127 176)(98 155 128 177)(99 156 129 178)(100 157 130 179)(101 158 131 180)(102 159 132 181)(103 160 133 182)(104 161 134 183)(105 139 135 184)(106 140 136 162)(107 141 137 163)(108 142 138 164)(109 143 116 165)(110 144 117 166)(111 145 118 167)(112 146 119 168)(113 147 120 169)(114 148 121 170)(115 149 122 171)
(1 164)(2 165)(3 166)(4 167)(5 168)(6 169)(7 170)(8 171)(9 172)(10 173)(11 174)(12 175)(13 176)(14 177)(15 178)(16 179)(17 180)(18 181)(19 182)(20 183)(21 184)(22 162)(23 163)(24 141)(25 142)(26 143)(27 144)(28 145)(29 146)(30 147)(31 148)(32 149)(33 150)(34 151)(35 152)(36 153)(37 154)(38 155)(39 156)(40 157)(41 158)(42 159)(43 160)(44 161)(45 139)(46 140)(47 112)(48 113)(49 114)(50 115)(51 93)(52 94)(53 95)(54 96)(55 97)(56 98)(57 99)(58 100)(59 101)(60 102)(61 103)(62 104)(63 105)(64 106)(65 107)(66 108)(67 109)(68 110)(69 111)(70 133)(71 134)(72 135)(73 136)(74 137)(75 138)(76 116)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)(91 131)(92 132)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)(116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)(139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161)(162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13)(24 25)(26 46)(27 45)(28 44)(29 43)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(47 70)(48 92)(49 91)(50 90)(51 89)(52 88)(53 87)(54 86)(55 85)(56 84)(57 83)(58 82)(59 81)(60 80)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)(93 156)(94 155)(95 154)(96 153)(97 152)(98 151)(99 150)(100 149)(101 148)(102 147)(103 146)(104 145)(105 144)(106 143)(107 142)(108 141)(109 140)(110 139)(111 161)(112 160)(113 159)(114 158)(115 157)(116 162)(117 184)(118 183)(119 182)(120 181)(121 180)(122 179)(123 178)(124 177)(125 176)(126 175)(127 174)(128 173)(129 172)(130 171)(131 170)(132 169)(133 168)(134 167)(135 166)(136 165)(137 164)(138 163)

G:=sub<Sym(184)| (1,75,25,66)(2,76,26,67)(3,77,27,68)(4,78,28,69)(5,79,29,47)(6,80,30,48)(7,81,31,49)(8,82,32,50)(9,83,33,51)(10,84,34,52)(11,85,35,53)(12,86,36,54)(13,87,37,55)(14,88,38,56)(15,89,39,57)(16,90,40,58)(17,91,41,59)(18,92,42,60)(19,70,43,61)(20,71,44,62)(21,72,45,63)(22,73,46,64)(23,74,24,65)(93,150,123,172)(94,151,124,173)(95,152,125,174)(96,153,126,175)(97,154,127,176)(98,155,128,177)(99,156,129,178)(100,157,130,179)(101,158,131,180)(102,159,132,181)(103,160,133,182)(104,161,134,183)(105,139,135,184)(106,140,136,162)(107,141,137,163)(108,142,138,164)(109,143,116,165)(110,144,117,166)(111,145,118,167)(112,146,119,168)(113,147,120,169)(114,148,121,170)(115,149,122,171), (1,164)(2,165)(3,166)(4,167)(5,168)(6,169)(7,170)(8,171)(9,172)(10,173)(11,174)(12,175)(13,176)(14,177)(15,178)(16,179)(17,180)(18,181)(19,182)(20,183)(21,184)(22,162)(23,163)(24,141)(25,142)(26,143)(27,144)(28,145)(29,146)(30,147)(31,148)(32,149)(33,150)(34,151)(35,152)(36,153)(37,154)(38,155)(39,156)(40,157)(41,158)(42,159)(43,160)(44,161)(45,139)(46,140)(47,112)(48,113)(49,114)(50,115)(51,93)(52,94)(53,95)(54,96)(55,97)(56,98)(57,99)(58,100)(59,101)(60,102)(61,103)(62,104)(63,105)(64,106)(65,107)(66,108)(67,109)(68,110)(69,111)(70,133)(71,134)(72,135)(73,136)(74,137)(75,138)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,25)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(47,70)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(93,156)(94,155)(95,154)(96,153)(97,152)(98,151)(99,150)(100,149)(101,148)(102,147)(103,146)(104,145)(105,144)(106,143)(107,142)(108,141)(109,140)(110,139)(111,161)(112,160)(113,159)(114,158)(115,157)(116,162)(117,184)(118,183)(119,182)(120,181)(121,180)(122,179)(123,178)(124,177)(125,176)(126,175)(127,174)(128,173)(129,172)(130,171)(131,170)(132,169)(133,168)(134,167)(135,166)(136,165)(137,164)(138,163)>;

G:=Group( (1,75,25,66)(2,76,26,67)(3,77,27,68)(4,78,28,69)(5,79,29,47)(6,80,30,48)(7,81,31,49)(8,82,32,50)(9,83,33,51)(10,84,34,52)(11,85,35,53)(12,86,36,54)(13,87,37,55)(14,88,38,56)(15,89,39,57)(16,90,40,58)(17,91,41,59)(18,92,42,60)(19,70,43,61)(20,71,44,62)(21,72,45,63)(22,73,46,64)(23,74,24,65)(93,150,123,172)(94,151,124,173)(95,152,125,174)(96,153,126,175)(97,154,127,176)(98,155,128,177)(99,156,129,178)(100,157,130,179)(101,158,131,180)(102,159,132,181)(103,160,133,182)(104,161,134,183)(105,139,135,184)(106,140,136,162)(107,141,137,163)(108,142,138,164)(109,143,116,165)(110,144,117,166)(111,145,118,167)(112,146,119,168)(113,147,120,169)(114,148,121,170)(115,149,122,171), (1,164)(2,165)(3,166)(4,167)(5,168)(6,169)(7,170)(8,171)(9,172)(10,173)(11,174)(12,175)(13,176)(14,177)(15,178)(16,179)(17,180)(18,181)(19,182)(20,183)(21,184)(22,162)(23,163)(24,141)(25,142)(26,143)(27,144)(28,145)(29,146)(30,147)(31,148)(32,149)(33,150)(34,151)(35,152)(36,153)(37,154)(38,155)(39,156)(40,157)(41,158)(42,159)(43,160)(44,161)(45,139)(46,140)(47,112)(48,113)(49,114)(50,115)(51,93)(52,94)(53,95)(54,96)(55,97)(56,98)(57,99)(58,100)(59,101)(60,102)(61,103)(62,104)(63,105)(64,106)(65,107)(66,108)(67,109)(68,110)(69,111)(70,133)(71,134)(72,135)(73,136)(74,137)(75,138)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,25)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(47,70)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(93,156)(94,155)(95,154)(96,153)(97,152)(98,151)(99,150)(100,149)(101,148)(102,147)(103,146)(104,145)(105,144)(106,143)(107,142)(108,141)(109,140)(110,139)(111,161)(112,160)(113,159)(114,158)(115,157)(116,162)(117,184)(118,183)(119,182)(120,181)(121,180)(122,179)(123,178)(124,177)(125,176)(126,175)(127,174)(128,173)(129,172)(130,171)(131,170)(132,169)(133,168)(134,167)(135,166)(136,165)(137,164)(138,163) );

G=PermutationGroup([[(1,75,25,66),(2,76,26,67),(3,77,27,68),(4,78,28,69),(5,79,29,47),(6,80,30,48),(7,81,31,49),(8,82,32,50),(9,83,33,51),(10,84,34,52),(11,85,35,53),(12,86,36,54),(13,87,37,55),(14,88,38,56),(15,89,39,57),(16,90,40,58),(17,91,41,59),(18,92,42,60),(19,70,43,61),(20,71,44,62),(21,72,45,63),(22,73,46,64),(23,74,24,65),(93,150,123,172),(94,151,124,173),(95,152,125,174),(96,153,126,175),(97,154,127,176),(98,155,128,177),(99,156,129,178),(100,157,130,179),(101,158,131,180),(102,159,132,181),(103,160,133,182),(104,161,134,183),(105,139,135,184),(106,140,136,162),(107,141,137,163),(108,142,138,164),(109,143,116,165),(110,144,117,166),(111,145,118,167),(112,146,119,168),(113,147,120,169),(114,148,121,170),(115,149,122,171)], [(1,164),(2,165),(3,166),(4,167),(5,168),(6,169),(7,170),(8,171),(9,172),(10,173),(11,174),(12,175),(13,176),(14,177),(15,178),(16,179),(17,180),(18,181),(19,182),(20,183),(21,184),(22,162),(23,163),(24,141),(25,142),(26,143),(27,144),(28,145),(29,146),(30,147),(31,148),(32,149),(33,150),(34,151),(35,152),(36,153),(37,154),(38,155),(39,156),(40,157),(41,158),(42,159),(43,160),(44,161),(45,139),(46,140),(47,112),(48,113),(49,114),(50,115),(51,93),(52,94),(53,95),(54,96),(55,97),(56,98),(57,99),(58,100),(59,101),(60,102),(61,103),(62,104),(63,105),(64,106),(65,107),(66,108),(67,109),(68,110),(69,111),(70,133),(71,134),(72,135),(73,136),(74,137),(75,138),(76,116),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130),(91,131),(92,132)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115),(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138),(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161),(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(11,13),(24,25),(26,46),(27,45),(28,44),(29,43),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(47,70),(48,92),(49,91),(50,90),(51,89),(52,88),(53,87),(54,86),(55,85),(56,84),(57,83),(58,82),(59,81),(60,80),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71),(93,156),(94,155),(95,154),(96,153),(97,152),(98,151),(99,150),(100,149),(101,148),(102,147),(103,146),(104,145),(105,144),(106,143),(107,142),(108,141),(109,140),(110,139),(111,161),(112,160),(113,159),(114,158),(115,157),(116,162),(117,184),(118,183),(119,182),(120,181),(121,180),(122,179),(123,178),(124,177),(125,176),(126,175),(127,174),(128,173),(129,172),(130,171),(131,170),(132,169),(133,168),(134,167),(135,166),(136,165),(137,164),(138,163)]])

62 conjugacy classes

class 1 2A2B2C 4 8A8B23A···23K46A···46K46L···46AG92A···92K
order122248823···2346···4646···4692···92
size11492246462···22···24···44···4

62 irreducible representations

dim1111222224
type+++++++++
imageC1C2C2C2D4D8D23D46C23⋊D4D4⋊D23
kernelD4⋊D23C23⋊C8D92D4×C23C46C23D4C4C2C1
# reps11111211112211

Matrix representation of D4⋊D23 in GL4(𝔽1289) generated by

1000
0100
00141
0010061288
,
1000
0100
00014
0011970
,
1035100
1074109700
0010
0001
,
1097128800
77119200
0010
0010061288
G:=sub<GL(4,GF(1289))| [1,0,0,0,0,1,0,0,0,0,1,1006,0,0,41,1288],[1,0,0,0,0,1,0,0,0,0,0,1197,0,0,14,0],[1035,1074,0,0,1,1097,0,0,0,0,1,0,0,0,0,1],[1097,771,0,0,1288,192,0,0,0,0,1,1006,0,0,0,1288] >;

D4⋊D23 in GAP, Magma, Sage, TeX

D_4\rtimes D_{23}
% in TeX

G:=Group("D4:D23");
// GroupNames label

G:=SmallGroup(368,14);
// by ID

G=gap.SmallGroup(368,14);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-23,61,182,97,42,8804]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^23=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D4⋊D23 in TeX

׿
×
𝔽