Extensions 1→N→G→Q→1 with N=C5×C3⋊Dic3 and Q=C2

Direct product G=N×Q with N=C5×C3⋊Dic3 and Q=C2
dρLabelID
C10×C3⋊Dic3360C10xC3:Dic3360,108

Semidirect products G=N:Q with N=C5×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C3⋊Dic3)⋊1C2 = D5×C3⋊Dic3φ: C2/C1C2 ⊆ Out C5×C3⋊Dic3180(C5xC3:Dic3):1C2360,65
(C5×C3⋊Dic3)⋊2C2 = C30.D6φ: C2/C1C2 ⊆ Out C5×C3⋊Dic3180(C5xC3:Dic3):2C2360,67
(C5×C3⋊Dic3)⋊3C2 = C327D20φ: C2/C1C2 ⊆ Out C5×C3⋊Dic3180(C5xC3:Dic3):3C2360,69
(C5×C3⋊Dic3)⋊4C2 = D30.S3φ: C2/C1C2 ⊆ Out C5×C3⋊Dic31204(C5xC3:Dic3):4C2360,84
(C5×C3⋊Dic3)⋊5C2 = C323D20φ: C2/C1C2 ⊆ Out C5×C3⋊Dic31204(C5xC3:Dic3):5C2360,87
(C5×C3⋊Dic3)⋊6C2 = C5×S3×Dic3φ: C2/C1C2 ⊆ Out C5×C3⋊Dic31204(C5xC3:Dic3):6C2360,72
(C5×C3⋊Dic3)⋊7C2 = C5×D6⋊S3φ: C2/C1C2 ⊆ Out C5×C3⋊Dic31204(C5xC3:Dic3):7C2360,74
(C5×C3⋊Dic3)⋊8C2 = C5×C327D4φ: C2/C1C2 ⊆ Out C5×C3⋊Dic3180(C5xC3:Dic3):8C2360,109
(C5×C3⋊Dic3)⋊9C2 = C3⋊S3×C20φ: trivial image180(C5xC3:Dic3):9C2360,106

Non-split extensions G=N.Q with N=C5×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C3⋊Dic3).1C2 = C15⋊Dic6φ: C2/C1C2 ⊆ Out C5×C3⋊Dic3360(C5xC3:Dic3).1C2360,71
(C5×C3⋊Dic3).2C2 = C323Dic10φ: C2/C1C2 ⊆ Out C5×C3⋊Dic31204(C5xC3:Dic3).2C2360,88
(C5×C3⋊Dic3).3C2 = C5×C322C8φ: C2/C1C2 ⊆ Out C5×C3⋊Dic31204(C5xC3:Dic3).3C2360,55
(C5×C3⋊Dic3).4C2 = (C3×C15)⋊9C8φ: C2/C1C2 ⊆ Out C5×C3⋊Dic31204(C5xC3:Dic3).4C2360,56
(C5×C3⋊Dic3).5C2 = C5×C322Q8φ: C2/C1C2 ⊆ Out C5×C3⋊Dic31204(C5xC3:Dic3).5C2360,76
(C5×C3⋊Dic3).6C2 = C5×C324Q8φ: C2/C1C2 ⊆ Out C5×C3⋊Dic3360(C5xC3:Dic3).6C2360,105

׿
×
𝔽