Copied to
clipboard

G = D30.S3order 360 = 23·32·5

The non-split extension by D30 of S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, A-group

Aliases: D30.S3, C30.17D6, D152Dic3, Dic152S3, C10.8S32, C158(C4×S3), C53(S3×Dic3), C324(C4×D5), (C3×D15)⋊5C4, C3⋊Dic32D5, C32(D5×Dic3), (C3×C6).8D10, C6.23(S3×D5), (C6×D15).3C2, C156(C2×Dic3), C33(D30.C2), C2.1(D15⋊S3), (C3×Dic15)⋊8C2, (C3×C30).22C22, (C3×C15)⋊22(C2×C4), (C5×C3⋊Dic3)⋊4C2, SmallGroup(360,84)

Series: Derived Chief Lower central Upper central

C1C3×C15 — D30.S3
C1C5C15C3×C15C3×C30C6×D15 — D30.S3
C3×C15 — D30.S3
C1C2

Generators and relations for D30.S3
 G = < a,b,c,d | a30=b2=c3=1, d2=a15, bab=a-1, ac=ca, dad-1=a11, bc=cb, dbd-1=a10b, dcd-1=c-1 >

Subgroups: 356 in 70 conjugacy classes, 27 normal (23 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, C2×C4, C32, D5, C10, Dic3, C12, D6, C2×C6, C15, C15, C3×S3, C3×C6, Dic5, C20, D10, C4×S3, C2×Dic3, C3×D5, D15, C30, C30, C3×Dic3, C3⋊Dic3, S3×C6, C4×D5, C3×C15, C5×Dic3, C3×Dic5, Dic15, C6×D5, D30, S3×Dic3, C3×D15, C3×C30, D5×Dic3, D30.C2, C3×Dic15, C5×C3⋊Dic3, C6×D15, D30.S3
Quotients: C1, C2, C4, C22, S3, C2×C4, D5, Dic3, D6, D10, C4×S3, C2×Dic3, S32, C4×D5, S3×D5, S3×Dic3, D5×Dic3, D30.C2, D15⋊S3, D30.S3

Smallest permutation representation of D30.S3
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 74)(2 73)(3 72)(4 71)(5 70)(6 69)(7 68)(8 67)(9 66)(10 65)(11 64)(12 63)(13 62)(14 61)(15 90)(16 89)(17 88)(18 87)(19 86)(20 85)(21 84)(22 83)(23 82)(24 81)(25 80)(26 79)(27 78)(28 77)(29 76)(30 75)(31 97)(32 96)(33 95)(34 94)(35 93)(36 92)(37 91)(38 120)(39 119)(40 118)(41 117)(42 116)(43 115)(44 114)(45 113)(46 112)(47 111)(48 110)(49 109)(50 108)(51 107)(52 106)(53 105)(54 104)(55 103)(56 102)(57 101)(58 100)(59 99)(60 98)
(1 11 21)(2 12 22)(3 13 23)(4 14 24)(5 15 25)(6 16 26)(7 17 27)(8 18 28)(9 19 29)(10 20 30)(31 41 51)(32 42 52)(33 43 53)(34 44 54)(35 45 55)(36 46 56)(37 47 57)(38 48 58)(39 49 59)(40 50 60)(61 81 71)(62 82 72)(63 83 73)(64 84 74)(65 85 75)(66 86 76)(67 87 77)(68 88 78)(69 89 79)(70 90 80)(91 111 101)(92 112 102)(93 113 103)(94 114 104)(95 115 105)(96 116 106)(97 117 107)(98 118 108)(99 119 109)(100 120 110)
(1 46 16 31)(2 57 17 42)(3 38 18 53)(4 49 19 34)(5 60 20 45)(6 41 21 56)(7 52 22 37)(8 33 23 48)(9 44 24 59)(10 55 25 40)(11 36 26 51)(12 47 27 32)(13 58 28 43)(14 39 29 54)(15 50 30 35)(61 109 76 94)(62 120 77 105)(63 101 78 116)(64 112 79 97)(65 93 80 108)(66 104 81 119)(67 115 82 100)(68 96 83 111)(69 107 84 92)(70 118 85 103)(71 99 86 114)(72 110 87 95)(73 91 88 106)(74 102 89 117)(75 113 90 98)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,90)(16,89)(17,88)(18,87)(19,86)(20,85)(21,84)(22,83)(23,82)(24,81)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,97)(32,96)(33,95)(34,94)(35,93)(36,92)(37,91)(38,120)(39,119)(40,118)(41,117)(42,116)(43,115)(44,114)(45,113)(46,112)(47,111)(48,110)(49,109)(50,108)(51,107)(52,106)(53,105)(54,104)(55,103)(56,102)(57,101)(58,100)(59,99)(60,98), (1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,28)(9,19,29)(10,20,30)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,46,16,31)(2,57,17,42)(3,38,18,53)(4,49,19,34)(5,60,20,45)(6,41,21,56)(7,52,22,37)(8,33,23,48)(9,44,24,59)(10,55,25,40)(11,36,26,51)(12,47,27,32)(13,58,28,43)(14,39,29,54)(15,50,30,35)(61,109,76,94)(62,120,77,105)(63,101,78,116)(64,112,79,97)(65,93,80,108)(66,104,81,119)(67,115,82,100)(68,96,83,111)(69,107,84,92)(70,118,85,103)(71,99,86,114)(72,110,87,95)(73,91,88,106)(74,102,89,117)(75,113,90,98)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,90)(16,89)(17,88)(18,87)(19,86)(20,85)(21,84)(22,83)(23,82)(24,81)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,97)(32,96)(33,95)(34,94)(35,93)(36,92)(37,91)(38,120)(39,119)(40,118)(41,117)(42,116)(43,115)(44,114)(45,113)(46,112)(47,111)(48,110)(49,109)(50,108)(51,107)(52,106)(53,105)(54,104)(55,103)(56,102)(57,101)(58,100)(59,99)(60,98), (1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,28)(9,19,29)(10,20,30)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,46,16,31)(2,57,17,42)(3,38,18,53)(4,49,19,34)(5,60,20,45)(6,41,21,56)(7,52,22,37)(8,33,23,48)(9,44,24,59)(10,55,25,40)(11,36,26,51)(12,47,27,32)(13,58,28,43)(14,39,29,54)(15,50,30,35)(61,109,76,94)(62,120,77,105)(63,101,78,116)(64,112,79,97)(65,93,80,108)(66,104,81,119)(67,115,82,100)(68,96,83,111)(69,107,84,92)(70,118,85,103)(71,99,86,114)(72,110,87,95)(73,91,88,106)(74,102,89,117)(75,113,90,98) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,74),(2,73),(3,72),(4,71),(5,70),(6,69),(7,68),(8,67),(9,66),(10,65),(11,64),(12,63),(13,62),(14,61),(15,90),(16,89),(17,88),(18,87),(19,86),(20,85),(21,84),(22,83),(23,82),(24,81),(25,80),(26,79),(27,78),(28,77),(29,76),(30,75),(31,97),(32,96),(33,95),(34,94),(35,93),(36,92),(37,91),(38,120),(39,119),(40,118),(41,117),(42,116),(43,115),(44,114),(45,113),(46,112),(47,111),(48,110),(49,109),(50,108),(51,107),(52,106),(53,105),(54,104),(55,103),(56,102),(57,101),(58,100),(59,99),(60,98)], [(1,11,21),(2,12,22),(3,13,23),(4,14,24),(5,15,25),(6,16,26),(7,17,27),(8,18,28),(9,19,29),(10,20,30),(31,41,51),(32,42,52),(33,43,53),(34,44,54),(35,45,55),(36,46,56),(37,47,57),(38,48,58),(39,49,59),(40,50,60),(61,81,71),(62,82,72),(63,83,73),(64,84,74),(65,85,75),(66,86,76),(67,87,77),(68,88,78),(69,89,79),(70,90,80),(91,111,101),(92,112,102),(93,113,103),(94,114,104),(95,115,105),(96,116,106),(97,117,107),(98,118,108),(99,119,109),(100,120,110)], [(1,46,16,31),(2,57,17,42),(3,38,18,53),(4,49,19,34),(5,60,20,45),(6,41,21,56),(7,52,22,37),(8,33,23,48),(9,44,24,59),(10,55,25,40),(11,36,26,51),(12,47,27,32),(13,58,28,43),(14,39,29,54),(15,50,30,35),(61,109,76,94),(62,120,77,105),(63,101,78,116),(64,112,79,97),(65,93,80,108),(66,104,81,119),(67,115,82,100),(68,96,83,111),(69,107,84,92),(70,118,85,103),(71,99,86,114),(72,110,87,95),(73,91,88,106),(74,102,89,117),(75,113,90,98)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D5A5B6A6B6C6D6E10A10B12A12B15A···15H20A20B20C20D30A···30H
order1222333444455666661010121215···152020202030···30
size1115152249915152222430302230304···4181818184···4

42 irreducible representations

dim11111222222224444444
type+++++++-++++--+
imageC1C2C2C2C4S3S3D5Dic3D6D10C4×S3C4×D5S32S3×D5S3×Dic3D5×Dic3D30.C2D15⋊S3D30.S3
kernelD30.S3C3×Dic15C5×C3⋊Dic3C6×D15C3×D15Dic15D30C3⋊Dic3D15C30C3×C6C15C32C10C6C5C3C3C2C1
# reps11114112222241412244

Matrix representation of D30.S3 in GL6(𝔽61)

44600000
45600000
001100
0060000
000010
000001
,
12470000
32490000
001000
00606000
000010
000001
,
100000
010000
001000
000100
0000601
0000600
,
6000000
0600000
0001100
0011000
000001
000010

G:=sub<GL(6,GF(61))| [44,45,0,0,0,0,60,60,0,0,0,0,0,0,1,60,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,32,0,0,0,0,47,49,0,0,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,0,0,0,0,1,0],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,11,0,0,0,0,11,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D30.S3 in GAP, Magma, Sage, TeX

D_{30}.S_3
% in TeX

G:=Group("D30.S3");
// GroupNames label

G:=SmallGroup(360,84);
// by ID

G=gap.SmallGroup(360,84);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,31,387,201,730,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^3=1,d^2=a^15,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^11,b*c=c*b,d*b*d^-1=a^10*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽