Extensions 1→N→G→Q→1 with N=C2×Dic23 and Q=C2

Direct product G=N×Q with N=C2×Dic23 and Q=C2

Semidirect products G=N:Q with N=C2×Dic23 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic23)⋊1C2 = D46⋊C4φ: C2/C1C2 ⊆ Out C2×Dic23184(C2xDic23):1C2368,13
(C2×Dic23)⋊2C2 = C23.D23φ: C2/C1C2 ⊆ Out C2×Dic23184(C2xDic23):2C2368,18
(C2×Dic23)⋊3C2 = D42D23φ: C2/C1C2 ⊆ Out C2×Dic231844-(C2xDic23):3C2368,32
(C2×Dic23)⋊4C2 = C2×C23⋊D4φ: C2/C1C2 ⊆ Out C2×Dic23184(C2xDic23):4C2368,36
(C2×Dic23)⋊5C2 = C2×C4×D23φ: trivial image184(C2xDic23):5C2368,28

Non-split extensions G=N.Q with N=C2×Dic23 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic23).1C2 = Dic23⋊C4φ: C2/C1C2 ⊆ Out C2×Dic23368(C2xDic23).1C2368,11
(C2×Dic23).2C2 = C92⋊C4φ: C2/C1C2 ⊆ Out C2×Dic23368(C2xDic23).2C2368,12
(C2×Dic23).3C2 = C2×Dic46φ: C2/C1C2 ⊆ Out C2×Dic23368(C2xDic23).3C2368,27
(C2×Dic23).4C2 = C4×Dic23φ: trivial image368(C2xDic23).4C2368,10