Copied to
clipboard

G = C2×C23⋊D4order 368 = 24·23

Direct product of C2 and C23⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23⋊D4, C462D4, C23⋊D23, C222D46, D463C22, C46.10C23, Dic232C22, C233(C2×D4), (C2×C46)⋊3C22, (C22×C46)⋊2C2, (C2×Dic23)⋊4C2, (C22×D23)⋊3C2, C2.10(C22×D23), SmallGroup(368,36)

Series: Derived Chief Lower central Upper central

C1C46 — C2×C23⋊D4
C1C23C46D46C22×D23 — C2×C23⋊D4
C23C46 — C2×C23⋊D4
C1C22C23

Generators and relations for C2×C23⋊D4
 G = < a,b,c,d | a2=b23=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 488 in 54 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C2×D4, C23, D23, C46, C46, C46, Dic23, D46, D46, C2×C46, C2×C46, C2×C46, C2×Dic23, C23⋊D4, C22×D23, C22×C46, C2×C23⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, D23, D46, C23⋊D4, C22×D23, C2×C23⋊D4

Smallest permutation representation of C2×C23⋊D4
On 184 points
Generators in S184
(1 116)(2 117)(3 118)(4 119)(5 120)(6 121)(7 122)(8 123)(9 124)(10 125)(11 126)(12 127)(13 128)(14 129)(15 130)(16 131)(17 132)(18 133)(19 134)(20 135)(21 136)(22 137)(23 138)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 100)(32 101)(33 102)(34 103)(35 104)(36 105)(37 106)(38 107)(39 108)(40 109)(41 110)(42 111)(43 112)(44 113)(45 114)(46 115)(47 162)(48 163)(49 164)(50 165)(51 166)(52 167)(53 168)(54 169)(55 170)(56 171)(57 172)(58 173)(59 174)(60 175)(61 176)(62 177)(63 178)(64 179)(65 180)(66 181)(67 182)(68 183)(69 184)(70 139)(71 140)(72 141)(73 142)(74 143)(75 144)(76 145)(77 146)(78 147)(79 148)(80 149)(81 150)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)(91 160)(92 161)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)(116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)(139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161)(162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184)
(1 47 24 70)(2 69 25 92)(3 68 26 91)(4 67 27 90)(5 66 28 89)(6 65 29 88)(7 64 30 87)(8 63 31 86)(9 62 32 85)(10 61 33 84)(11 60 34 83)(12 59 35 82)(13 58 36 81)(14 57 37 80)(15 56 38 79)(16 55 39 78)(17 54 40 77)(18 53 41 76)(19 52 42 75)(20 51 43 74)(21 50 44 73)(22 49 45 72)(23 48 46 71)(93 139 116 162)(94 161 117 184)(95 160 118 183)(96 159 119 182)(97 158 120 181)(98 157 121 180)(99 156 122 179)(100 155 123 178)(101 154 124 177)(102 153 125 176)(103 152 126 175)(104 151 127 174)(105 150 128 173)(106 149 129 172)(107 148 130 171)(108 147 131 170)(109 146 132 169)(110 145 133 168)(111 144 134 167)(112 143 135 166)(113 142 136 165)(114 141 137 164)(115 140 138 163)
(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)(25 46)(26 45)(27 44)(28 43)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 36)(47 70)(48 92)(49 91)(50 90)(51 89)(52 88)(53 87)(54 86)(55 85)(56 84)(57 83)(58 82)(59 81)(60 80)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)(94 115)(95 114)(96 113)(97 112)(98 111)(99 110)(100 109)(101 108)(102 107)(103 106)(104 105)(117 138)(118 137)(119 136)(120 135)(121 134)(122 133)(123 132)(124 131)(125 130)(126 129)(127 128)(139 162)(140 184)(141 183)(142 182)(143 181)(144 180)(145 179)(146 178)(147 177)(148 176)(149 175)(150 174)(151 173)(152 172)(153 171)(154 170)(155 169)(156 168)(157 167)(158 166)(159 165)(160 164)(161 163)

G:=sub<Sym(184)| (1,116)(2,117)(3,118)(4,119)(5,120)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,127)(13,128)(14,129)(15,130)(16,131)(17,132)(18,133)(19,134)(20,135)(21,136)(22,137)(23,138)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,162)(48,163)(49,164)(50,165)(51,166)(52,167)(53,168)(54,169)(55,170)(56,171)(57,172)(58,173)(59,174)(60,175)(61,176)(62,177)(63,178)(64,179)(65,180)(66,181)(67,182)(68,183)(69,184)(70,139)(71,140)(72,141)(73,142)(74,143)(75,144)(76,145)(77,146)(78,147)(79,148)(80,149)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,161), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,47,24,70)(2,69,25,92)(3,68,26,91)(4,67,27,90)(5,66,28,89)(6,65,29,88)(7,64,30,87)(8,63,31,86)(9,62,32,85)(10,61,33,84)(11,60,34,83)(12,59,35,82)(13,58,36,81)(14,57,37,80)(15,56,38,79)(16,55,39,78)(17,54,40,77)(18,53,41,76)(19,52,42,75)(20,51,43,74)(21,50,44,73)(22,49,45,72)(23,48,46,71)(93,139,116,162)(94,161,117,184)(95,160,118,183)(96,159,119,182)(97,158,120,181)(98,157,121,180)(99,156,122,179)(100,155,123,178)(101,154,124,177)(102,153,125,176)(103,152,126,175)(104,151,127,174)(105,150,128,173)(106,149,129,172)(107,148,130,171)(108,147,131,170)(109,146,132,169)(110,145,133,168)(111,144,134,167)(112,143,135,166)(113,142,136,165)(114,141,137,164)(115,140,138,163), (2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(47,70)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)(123,132)(124,131)(125,130)(126,129)(127,128)(139,162)(140,184)(141,183)(142,182)(143,181)(144,180)(145,179)(146,178)(147,177)(148,176)(149,175)(150,174)(151,173)(152,172)(153,171)(154,170)(155,169)(156,168)(157,167)(158,166)(159,165)(160,164)(161,163)>;

G:=Group( (1,116)(2,117)(3,118)(4,119)(5,120)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,127)(13,128)(14,129)(15,130)(16,131)(17,132)(18,133)(19,134)(20,135)(21,136)(22,137)(23,138)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,162)(48,163)(49,164)(50,165)(51,166)(52,167)(53,168)(54,169)(55,170)(56,171)(57,172)(58,173)(59,174)(60,175)(61,176)(62,177)(63,178)(64,179)(65,180)(66,181)(67,182)(68,183)(69,184)(70,139)(71,140)(72,141)(73,142)(74,143)(75,144)(76,145)(77,146)(78,147)(79,148)(80,149)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,161), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,47,24,70)(2,69,25,92)(3,68,26,91)(4,67,27,90)(5,66,28,89)(6,65,29,88)(7,64,30,87)(8,63,31,86)(9,62,32,85)(10,61,33,84)(11,60,34,83)(12,59,35,82)(13,58,36,81)(14,57,37,80)(15,56,38,79)(16,55,39,78)(17,54,40,77)(18,53,41,76)(19,52,42,75)(20,51,43,74)(21,50,44,73)(22,49,45,72)(23,48,46,71)(93,139,116,162)(94,161,117,184)(95,160,118,183)(96,159,119,182)(97,158,120,181)(98,157,121,180)(99,156,122,179)(100,155,123,178)(101,154,124,177)(102,153,125,176)(103,152,126,175)(104,151,127,174)(105,150,128,173)(106,149,129,172)(107,148,130,171)(108,147,131,170)(109,146,132,169)(110,145,133,168)(111,144,134,167)(112,143,135,166)(113,142,136,165)(114,141,137,164)(115,140,138,163), (2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(47,70)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)(123,132)(124,131)(125,130)(126,129)(127,128)(139,162)(140,184)(141,183)(142,182)(143,181)(144,180)(145,179)(146,178)(147,177)(148,176)(149,175)(150,174)(151,173)(152,172)(153,171)(154,170)(155,169)(156,168)(157,167)(158,166)(159,165)(160,164)(161,163) );

G=PermutationGroup([[(1,116),(2,117),(3,118),(4,119),(5,120),(6,121),(7,122),(8,123),(9,124),(10,125),(11,126),(12,127),(13,128),(14,129),(15,130),(16,131),(17,132),(18,133),(19,134),(20,135),(21,136),(22,137),(23,138),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,100),(32,101),(33,102),(34,103),(35,104),(36,105),(37,106),(38,107),(39,108),(40,109),(41,110),(42,111),(43,112),(44,113),(45,114),(46,115),(47,162),(48,163),(49,164),(50,165),(51,166),(52,167),(53,168),(54,169),(55,170),(56,171),(57,172),(58,173),(59,174),(60,175),(61,176),(62,177),(63,178),(64,179),(65,180),(66,181),(67,182),(68,183),(69,184),(70,139),(71,140),(72,141),(73,142),(74,143),(75,144),(76,145),(77,146),(78,147),(79,148),(80,149),(81,150),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159),(91,160),(92,161)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115),(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138),(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161),(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184)], [(1,47,24,70),(2,69,25,92),(3,68,26,91),(4,67,27,90),(5,66,28,89),(6,65,29,88),(7,64,30,87),(8,63,31,86),(9,62,32,85),(10,61,33,84),(11,60,34,83),(12,59,35,82),(13,58,36,81),(14,57,37,80),(15,56,38,79),(16,55,39,78),(17,54,40,77),(18,53,41,76),(19,52,42,75),(20,51,43,74),(21,50,44,73),(22,49,45,72),(23,48,46,71),(93,139,116,162),(94,161,117,184),(95,160,118,183),(96,159,119,182),(97,158,120,181),(98,157,121,180),(99,156,122,179),(100,155,123,178),(101,154,124,177),(102,153,125,176),(103,152,126,175),(104,151,127,174),(105,150,128,173),(106,149,129,172),(107,148,130,171),(108,147,131,170),(109,146,132,169),(110,145,133,168),(111,144,134,167),(112,143,135,166),(113,142,136,165),(114,141,137,164),(115,140,138,163)], [(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13),(25,46),(26,45),(27,44),(28,43),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,36),(47,70),(48,92),(49,91),(50,90),(51,89),(52,88),(53,87),(54,86),(55,85),(56,84),(57,83),(58,82),(59,81),(60,80),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71),(94,115),(95,114),(96,113),(97,112),(98,111),(99,110),(100,109),(101,108),(102,107),(103,106),(104,105),(117,138),(118,137),(119,136),(120,135),(121,134),(122,133),(123,132),(124,131),(125,130),(126,129),(127,128),(139,162),(140,184),(141,183),(142,182),(143,181),(144,180),(145,179),(146,178),(147,177),(148,176),(149,175),(150,174),(151,173),(152,172),(153,171),(154,170),(155,169),(156,168),(157,167),(158,166),(159,165),(160,164),(161,163)]])

98 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B23A···23K46A···46BY
order122222224423···2346···46
size111122464646462···22···2

98 irreducible representations

dim111112222
type++++++++
imageC1C2C2C2C2D4D23D46C23⋊D4
kernelC2×C23⋊D4C2×Dic23C23⋊D4C22×D23C22×C46C46C23C22C2
# reps114112113344

Matrix representation of C2×C23⋊D4 in GL3(𝔽277) generated by

27600
010
001
,
100
024217
01229
,
27600
0243
0177253
,
27600
034266
0105243
G:=sub<GL(3,GF(277))| [276,0,0,0,1,0,0,0,1],[1,0,0,0,242,1,0,17,229],[276,0,0,0,24,177,0,3,253],[276,0,0,0,34,105,0,266,243] >;

C2×C23⋊D4 in GAP, Magma, Sage, TeX

C_2\times C_{23}\rtimes D_4
% in TeX

G:=Group("C2xC23:D4");
// GroupNames label

G:=SmallGroup(368,36);
// by ID

G=gap.SmallGroup(368,36);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-23,182,8804]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^23=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽