Extensions 1→N→G→Q→1 with N=C20⋊D5 and Q=C2

Direct product G=N×Q with N=C20⋊D5 and Q=C2
dρLabelID
C2×C20⋊D5200C2xC20:D5400,193

Semidirect products G=N:Q with N=C20⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
C20⋊D51C2 = C525D8φ: C2/C1C2 ⊆ Out C20⋊D5200C20:D5:1C2400,95
C20⋊D52C2 = C5⋊D40φ: C2/C1C2 ⊆ Out C20⋊D5404+C20:D5:2C2400,65
C20⋊D53C2 = C527D8φ: C2/C1C2 ⊆ Out C20⋊D5200C20:D5:3C2400,103
C20⋊D54C2 = Dic105D5φ: C2/C1C2 ⊆ Out C20⋊D5404+C20:D5:4C2400,168
C20⋊D55C2 = D5×D20φ: C2/C1C2 ⊆ Out C20⋊D5404+C20:D5:5C2400,170
C20⋊D56C2 = D4×C5⋊D5φ: C2/C1C2 ⊆ Out C20⋊D5100C20:D5:6C2400,195
C20⋊D57C2 = C20.26D10φ: C2/C1C2 ⊆ Out C20⋊D5200C20:D5:7C2400,198
C20⋊D58C2 = C20.50D10φ: trivial image200C20:D5:8C2400,194

Non-split extensions G=N.Q with N=C20⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
C20⋊D5.1C2 = C402D5φ: C2/C1C2 ⊆ Out C20⋊D5200C20:D5.1C2400,94
C20⋊D5.2C2 = C524SD16φ: C2/C1C2 ⊆ Out C20⋊D5404+C20:D5.2C2400,68
C20⋊D5.3C2 = C5210SD16φ: C2/C1C2 ⊆ Out C20⋊D5200C20:D5.3C2400,105

׿
×
𝔽