metabelian, supersoluble, monomial
Aliases: C5⋊2D40, C52⋊3D8, D20⋊1D5, C20.10D10, C10.12D20, C4.1D52, C5⋊2C8⋊1D5, C5⋊1(D4⋊D5), (C5×D20)⋊2C2, (C5×C10).7D4, C20⋊D5⋊2C2, C10.1(C5⋊D4), (C5×C20).2C22, C2.4(C5⋊D20), (C5×C5⋊2C8)⋊1C2, SmallGroup(400,65)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5⋊D40
G = < a,b,c | a5=b40=c2=1, bab-1=cac=a-1, cbc=b-1 >
Subgroups: 548 in 60 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C4, C22, C5, C5, C8, D4, D5, C10, C10, D8, C20, C20, D10, C2×C10, C52, C5⋊2C8, C40, D20, D20, C5×D4, C5×D5, C5⋊D5, C5×C10, D40, D4⋊D5, C5×C20, D5×C10, C2×C5⋊D5, C5×C5⋊2C8, C5×D20, C20⋊D5, C5⋊D40
Quotients: C1, C2, C22, D4, D5, D8, D10, D20, C5⋊D4, D40, D4⋊D5, D52, C5⋊D20, C5⋊D40
(1 25 9 33 17)(2 18 34 10 26)(3 27 11 35 19)(4 20 36 12 28)(5 29 13 37 21)(6 22 38 14 30)(7 31 15 39 23)(8 24 40 16 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)
G:=sub<Sym(40)| (1,25,9,33,17)(2,18,34,10,26)(3,27,11,35,19)(4,20,36,12,28)(5,29,13,37,21)(6,22,38,14,30)(7,31,15,39,23)(8,24,40,16,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)>;
G:=Group( (1,25,9,33,17)(2,18,34,10,26)(3,27,11,35,19)(4,20,36,12,28)(5,29,13,37,21)(6,22,38,14,30)(7,31,15,39,23)(8,24,40,16,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29) );
G=PermutationGroup([[(1,25,9,33,17),(2,18,34,10,26),(3,27,11,35,19),(4,20,36,12,28),(5,29,13,37,21),(6,22,38,14,30),(7,31,15,39,23),(8,24,40,16,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29)]])
49 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 20A | 20B | 20C | 20D | 20E | ··· | 20N | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 20 | 100 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 10 | ··· | 10 |
49 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | D4 | D5 | D5 | D8 | D10 | D20 | C5⋊D4 | D40 | D4⋊D5 | D52 | C5⋊D20 | C5⋊D40 |
kernel | C5⋊D40 | C5×C5⋊2C8 | C5×D20 | C20⋊D5 | C5×C10 | C5⋊2C8 | D20 | C52 | C20 | C10 | C10 | C5 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 2 | 4 | 4 | 8 |
Matrix representation of C5⋊D40 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 6 |
24 | 15 | 0 | 0 | 0 | 0 |
30 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 27 | 11 | 0 | 0 |
0 | 0 | 30 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 35 | 23 |
0 | 0 | 0 | 0 | 18 | 6 |
1 | 0 | 0 | 0 | 0 | 0 |
23 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6],[24,30,0,0,0,0,15,0,0,0,0,0,0,0,27,30,0,0,0,0,11,32,0,0,0,0,0,0,35,18,0,0,0,0,23,6],[1,23,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,40,7,0,0,0,0,0,0,0,40,0,0,0,0,40,0] >;
C5⋊D40 in GAP, Magma, Sage, TeX
C_5\rtimes D_{40}
% in TeX
G:=Group("C5:D40");
// GroupNames label
G:=SmallGroup(400,65);
// by ID
G=gap.SmallGroup(400,65);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,73,79,218,50,970,11525]);
// Polycyclic
G:=Group<a,b,c|a^5=b^40=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations