# Extensions 1→N→G→Q→1 with N=D4×C52 and Q=C2

Direct product G=N×Q with N=D4×C52 and Q=C2
dρLabelID
D4×C5×C10200D4xC5xC10400,202

Semidirect products G=N:Q with N=D4×C52 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C52)⋊1C2 = C5×D4⋊D5φ: C2/C1C2 ⊆ Out D4×C52404(D4xC5^2):1C2400,87
(D4×C52)⋊2C2 = C527D8φ: C2/C1C2 ⊆ Out D4×C52200(D4xC5^2):2C2400,103
(D4×C52)⋊3C2 = C5×D4×D5φ: C2/C1C2 ⊆ Out D4×C52404(D4xC5^2):3C2400,185
(D4×C52)⋊4C2 = C5×D42D5φ: C2/C1C2 ⊆ Out D4×C52404(D4xC5^2):4C2400,186
(D4×C52)⋊5C2 = D4×C5⋊D5φ: C2/C1C2 ⊆ Out D4×C52100(D4xC5^2):5C2400,195
(D4×C52)⋊6C2 = C20.D10φ: C2/C1C2 ⊆ Out D4×C52200(D4xC5^2):6C2400,196
(D4×C52)⋊7C2 = D8×C52φ: C2/C1C2 ⊆ Out D4×C52200(D4xC5^2):7C2400,113
(D4×C52)⋊8C2 = C4○D4×C52φ: trivial image200(D4xC5^2):8C2400,204

Non-split extensions G=N.Q with N=D4×C52 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C52).1C2 = C5×D4.D5φ: C2/C1C2 ⊆ Out D4×C52404(D4xC5^2).1C2400,88
(D4×C52).2C2 = C528SD16φ: C2/C1C2 ⊆ Out D4×C52200(D4xC5^2).2C2400,104
(D4×C52).3C2 = SD16×C52φ: C2/C1C2 ⊆ Out D4×C52200(D4xC5^2).3C2400,114

׿
×
𝔽