Copied to
clipboard

G = C5×D42D5order 400 = 24·52

Direct product of C5 and D42D5

direct product, metabelian, supersoluble, monomial

Aliases: C5×D42D5, C20.37D10, Dic103C10, C102.13C22, (C5×D4)⋊5D5, D42(C5×D5), (C5×D4)⋊3C10, (C4×D5)⋊2C10, (D5×C20)⋊6C2, C5⋊D42C10, C4.5(D5×C10), C20.5(C2×C10), (C2×C10).6D10, (D4×C52)⋊4C2, (C2×Dic5)⋊3C10, (C10×Dic5)⋊9C2, (C5×Dic10)⋊8C2, D10.2(C2×C10), C5210(C4○D4), C22.1(D5×C10), (C5×C10).24C23, C10.6(C22×C10), (C5×C20).21C22, Dic5.3(C2×C10), C10.45(C22×D5), (D5×C10).15C22, (C5×Dic5).25C22, C52(C5×C4○D4), C2.7(D5×C2×C10), (C2×C10).(C2×C10), (C5×C5⋊D4)⋊6C2, SmallGroup(400,186)

Series: Derived Chief Lower central Upper central

C1C10 — C5×D42D5
C1C5C10C5×C10D5×C10D5×C20 — C5×D42D5
C5C10 — C5×D42D5
C1C10C5×D4

Generators and relations for C5×D42D5
 G = < a,b,c,d,e | a5=b4=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 236 in 96 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C5, C2×C4, D4, D4, Q8, D5, C10, C10, C4○D4, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C52, Dic10, C4×D5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×D4, C5×Q8, C5×D5, C5×C10, C5×C10, D42D5, C5×C4○D4, C5×Dic5, C5×Dic5, C5×C20, D5×C10, C102, C5×Dic10, D5×C20, C10×Dic5, C5×C5⋊D4, D4×C52, C5×D42D5
Quotients: C1, C2, C22, C5, C23, D5, C10, C4○D4, D10, C2×C10, C22×D5, C22×C10, C5×D5, D42D5, C5×C4○D4, D5×C10, D5×C2×C10, C5×D42D5

Smallest permutation representation of C5×D42D5
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 18 8 13)(2 19 9 14)(3 20 10 15)(4 16 6 11)(5 17 7 12)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 16)(7 17)(8 18)(9 19)(10 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 4 2 5 3)(6 9 7 10 8)(11 14 12 15 13)(16 19 17 20 18)(21 23 25 22 24)(26 28 30 27 29)(31 33 35 32 34)(36 38 40 37 39)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 29)(7 30)(8 26)(9 27)(10 28)(11 34)(12 35)(13 31)(14 32)(15 33)(16 39)(17 40)(18 36)(19 37)(20 38)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,18,8,13)(2,19,9,14)(3,20,10,15)(4,16,6,11)(5,17,7,12)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,13)(2,14)(3,15)(4,11)(5,12)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,4,2,5,3)(6,9,7,10,8)(11,14,12,15,13)(16,19,17,20,18)(21,23,25,22,24)(26,28,30,27,29)(31,33,35,32,34)(36,38,40,37,39), (1,21)(2,22)(3,23)(4,24)(5,25)(6,29)(7,30)(8,26)(9,27)(10,28)(11,34)(12,35)(13,31)(14,32)(15,33)(16,39)(17,40)(18,36)(19,37)(20,38)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,18,8,13)(2,19,9,14)(3,20,10,15)(4,16,6,11)(5,17,7,12)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,13)(2,14)(3,15)(4,11)(5,12)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,4,2,5,3)(6,9,7,10,8)(11,14,12,15,13)(16,19,17,20,18)(21,23,25,22,24)(26,28,30,27,29)(31,33,35,32,34)(36,38,40,37,39), (1,21)(2,22)(3,23)(4,24)(5,25)(6,29)(7,30)(8,26)(9,27)(10,28)(11,34)(12,35)(13,31)(14,32)(15,33)(16,39)(17,40)(18,36)(19,37)(20,38) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,18,8,13),(2,19,9,14),(3,20,10,15),(4,16,6,11),(5,17,7,12),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,16),(7,17),(8,18),(9,19),(10,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,4,2,5,3),(6,9,7,10,8),(11,14,12,15,13),(16,19,17,20,18),(21,23,25,22,24),(26,28,30,27,29),(31,33,35,32,34),(36,38,40,37,39)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,29),(7,30),(8,26),(9,27),(10,28),(11,34),(12,35),(13,31),(14,32),(15,33),(16,39),(17,40),(18,36),(19,37),(20,38)]])

100 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D5E···5N10A10B10C10D10E···10V10W···10AP10AQ10AR10AS10AT20A20B20C20D20E···20N20O···20V20W···20AD
order122224444455555···51010101010···1010···10101010102020202020···2020···2020···20
size112210255101011112···211112···24···41010101022224···45···510···10

100 irreducible representations

dim1111111111112222222244
type+++++++++-
imageC1C2C2C2C2C2C5C10C10C10C10C10D5C4○D4D10D10C5×D5C5×C4○D4D5×C10D5×C10D42D5C5×D42D5
kernelC5×D42D5C5×Dic10D5×C20C10×Dic5C5×C5⋊D4D4×C52D42D5Dic10C4×D5C2×Dic5C5⋊D4C5×D4C5×D4C52C20C2×C10D4C5C4C22C5C1
# reps11122144488422248881628

Matrix representation of C5×D42D5 in GL4(𝔽41) generated by

16000
01600
00370
00037
,
0100
40000
0010
0001
,
0100
1000
0010
0001
,
1000
0100
00180
001916
,
03200
9000
001635
002225
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,37,0,0,0,0,37],[0,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,18,19,0,0,0,16],[0,9,0,0,32,0,0,0,0,0,16,22,0,0,35,25] >;

C5×D42D5 in GAP, Magma, Sage, TeX

C_5\times D_4\rtimes_2D_5
% in TeX

G:=Group("C5xD4:2D5");
// GroupNames label

G:=SmallGroup(400,186);
// by ID

G=gap.SmallGroup(400,186);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-5,247,794,404,11525]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽