Extensions 1→N→G→Q→1 with N=C2×C14 and Q=D7

Direct product G=N×Q with N=C2×C14 and Q=D7
dρLabelID
D7×C2×C1456D7xC2xC14392,42

Semidirect products G=N:Q with N=C2×C14 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2×C14)⋊1D7 = C7×C7⋊D4φ: D7/C7C2 ⊆ Aut C2×C14282(C2xC14):1D7392,27
(C2×C14)⋊2D7 = C727D4φ: D7/C7C2 ⊆ Aut C2×C14196(C2xC14):2D7392,32
(C2×C14)⋊3D7 = C22×C7⋊D7φ: D7/C7C2 ⊆ Aut C2×C14196(C2xC14):3D7392,43

Non-split extensions G=N.Q with N=C2×C14 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2×C14).1D7 = C2×Dic49φ: D7/C7C2 ⊆ Aut C2×C14392(C2xC14).1D7392,6
(C2×C14).2D7 = C49⋊D4φ: D7/C7C2 ⊆ Aut C2×C141962(C2xC14).2D7392,7
(C2×C14).3D7 = C22×D49φ: D7/C7C2 ⊆ Aut C2×C14196(C2xC14).3D7392,12
(C2×C14).4D7 = C2×C7⋊Dic7φ: D7/C7C2 ⊆ Aut C2×C14392(C2xC14).4D7392,31
(C2×C14).5D7 = C14×Dic7central extension (φ=1)56(C2xC14).5D7392,26

׿
×
𝔽