direct product, metabelian, supersoluble, monomial
Aliases: C7×C7⋊D4, C14≀C2, C72⋊6D4, Dic7⋊C14, D14⋊2C14, C142⋊2C2, C14.21D14, C7⋊2(C7×D4), C22⋊(C7×D7), (C2×C14)⋊1D7, (C2×C14)⋊2C14, (D7×C14)⋊4C2, C2.5(D7×C14), C14.5(C2×C14), (C7×Dic7)⋊4C2, (C7×C14).10C22, SmallGroup(392,27)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7×C7⋊D4
G = < a,b,c,d | a7=b7=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 21 20 19 18 17 16)(22 28 27 26 25 24 23)
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)
G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,21,20,19,18,17,16)(22,28,27,26,25,24,23), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,21,20,19,18,17,16)(22,28,27,26,25,24,23), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,21,20,19,18,17,16),(22,28,27,26,25,24,23)], [(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28)]])
G:=TransitiveGroup(28,47);
119 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 7A | ··· | 7F | 7G | ··· | 7AA | 14A | ··· | 14F | 14G | ··· | 14BW | 14BX | ··· | 14CC | 28A | ··· | 28F |
order | 1 | 2 | 2 | 2 | 4 | 7 | ··· | 7 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 14 | 14 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 14 | ··· | 14 | 14 | ··· | 14 |
119 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C7 | C14 | C14 | C14 | D4 | D7 | D14 | C7⋊D4 | C7×D4 | C7×D7 | D7×C14 | C7×C7⋊D4 |
kernel | C7×C7⋊D4 | C7×Dic7 | D7×C14 | C142 | C7⋊D4 | Dic7 | D14 | C2×C14 | C72 | C2×C14 | C14 | C7 | C7 | C22 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 1 | 3 | 3 | 6 | 6 | 18 | 18 | 36 |
Matrix representation of C7×C7⋊D4 ►in GL2(𝔽29) generated by
20 | 0 |
0 | 20 |
20 | 0 |
0 | 16 |
0 | 1 |
28 | 0 |
0 | 1 |
1 | 0 |
G:=sub<GL(2,GF(29))| [20,0,0,20],[20,0,0,16],[0,28,1,0],[0,1,1,0] >;
C7×C7⋊D4 in GAP, Magma, Sage, TeX
C_7\times C_7\rtimes D_4
% in TeX
G:=Group("C7xC7:D4");
// GroupNames label
G:=SmallGroup(392,27);
// by ID
G=gap.SmallGroup(392,27);
# by ID
G:=PCGroup([5,-2,-2,-7,-2,-7,301,8404]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^7=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export