| d | ρ | Label | ID | ||
|---|---|---|---|---|---|
| S3×C66 | 132 | 2 | S3xC66 | 396,26 | 
| extension | φ:Q→Aut N | d | ρ | Label | ID | 
|---|---|---|---|---|---|
| C66⋊1S3 = C2×C3⋊D33 | φ: S3/C3 → C2 ⊆ Aut C66 | 198 | C66:1S3 | 396,29 | |
| C66⋊2S3 = C6×D33 | φ: S3/C3 → C2 ⊆ Aut C66 | 132 | 2 | C66:2S3 | 396,27 | 
| C66⋊3S3 = C3⋊S3×C22 | φ: S3/C3 → C2 ⊆ Aut C66 | 198 | C66:3S3 | 396,28 | 
| extension | φ:Q→Aut N | d | ρ | Label | ID | 
|---|---|---|---|---|---|
| C66.1S3 = Dic99 | φ: S3/C3 → C2 ⊆ Aut C66 | 396 | 2- | C66.1S3 | 396,3 | 
| C66.2S3 = D198 | φ: S3/C3 → C2 ⊆ Aut C66 | 198 | 2+ | C66.2S3 | 396,9 | 
| C66.3S3 = C3⋊Dic33 | φ: S3/C3 → C2 ⊆ Aut C66 | 396 | C66.3S3 | 396,15 | |
| C66.4S3 = C3×Dic33 | φ: S3/C3 → C2 ⊆ Aut C66 | 132 | 2 | C66.4S3 | 396,13 | 
| C66.5S3 = C11×Dic9 | φ: S3/C3 → C2 ⊆ Aut C66 | 396 | 2 | C66.5S3 | 396,1 | 
| C66.6S3 = D9×C22 | φ: S3/C3 → C2 ⊆ Aut C66 | 198 | 2 | C66.6S3 | 396,8 | 
| C66.7S3 = C11×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C66 | 396 | C66.7S3 | 396,14 | |
| C66.8S3 = Dic3×C33 | central extension (φ=1) | 132 | 2 | C66.8S3 | 396,12 |