Extensions 1→N→G→Q→1 with N=C4xD25 and Q=C2

Direct product G=NxQ with N=C4xD25 and Q=C2
dρLabelID
C2xC4xD25200C2xC4xD25400,36

Semidirect products G=N:Q with N=C4xD25 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xD25):1C2 = D4xD25φ: C2/C1C2 ⊆ Out C4xD251004+(C4xD25):1C2400,39
(C4xD25):2C2 = D4:2D25φ: C2/C1C2 ⊆ Out C4xD252004-(C4xD25):2C2400,40
(C4xD25):3C2 = Q8:2D25φ: C2/C1C2 ⊆ Out C4xD252004+(C4xD25):3C2400,42
(C4xD25):4C2 = D100:5C2φ: C2/C1C2 ⊆ Out C4xD252002(C4xD25):4C2400,38

Non-split extensions G=N.Q with N=C4xD25 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xD25).1C2 = Q8xD25φ: C2/C1C2 ⊆ Out C4xD252004-(C4xD25).1C2400,41
(C4xD25).2C2 = C8:D25φ: C2/C1C2 ⊆ Out C4xD252002(C4xD25).2C2400,6
(C4xD25).3C2 = C100.C4φ: C2/C1C2 ⊆ Out C4xD252004(C4xD25).3C2400,29
(C4xD25).4C2 = C100:C4φ: C2/C1C2 ⊆ Out C4xD251004(C4xD25).4C2400,31
(C4xD25).5C2 = D25:C8φ: C2/C1C2 ⊆ Out C4xD252004(C4xD25).5C2400,28
(C4xD25).6C2 = C4xC25:C4φ: C2/C1C2 ⊆ Out C4xD251004(C4xD25).6C2400,30
(C4xD25).7C2 = C8xD25φ: trivial image2002(C4xD25).7C2400,5

׿
x
:
Z
F
o
wr
Q
<