direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C4×D25, C100⋊3C22, C20.55D10, C50.2C23, C22.9D50, D50.8C22, Dic25⋊3C22, C50⋊2(C2×C4), (C2×C100)⋊5C2, C25⋊2(C22×C4), (C2×C20).15D5, C10.17(C4×D5), (C2×Dic25)⋊5C2, (C2×C10).24D10, (C2×C50).9C22, C2.1(C22×D25), (C22×D25).4C2, C10.20(C22×D5), C5.(C2×C4×D5), SmallGroup(400,36)
Series: Derived ►Chief ►Lower central ►Upper central
| C25 — C2×C4×D25 |
Generators and relations for C2×C4×D25
G = < a,b,c,d | a2=b4=c25=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 613 in 81 conjugacy classes, 43 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C23, D5, C10, C10, C22×C4, Dic5, C20, D10, C2×C10, C25, C4×D5, C2×Dic5, C2×C20, C22×D5, D25, C50, C50, C2×C4×D5, Dic25, C100, D50, C2×C50, C4×D25, C2×Dic25, C2×C100, C22×D25, C2×C4×D25
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, D10, C4×D5, C22×D5, D25, C2×C4×D5, D50, C4×D25, C22×D25, C2×C4×D25
(1 110)(2 111)(3 112)(4 113)(5 114)(6 115)(7 116)(8 117)(9 118)(10 119)(11 120)(12 121)(13 122)(14 123)(15 124)(16 125)(17 101)(18 102)(19 103)(20 104)(21 105)(22 106)(23 107)(24 108)(25 109)(26 138)(27 139)(28 140)(29 141)(30 142)(31 143)(32 144)(33 145)(34 146)(35 147)(36 148)(37 149)(38 150)(39 126)(40 127)(41 128)(42 129)(43 130)(44 131)(45 132)(46 133)(47 134)(48 135)(49 136)(50 137)(51 172)(52 173)(53 174)(54 175)(55 151)(56 152)(57 153)(58 154)(59 155)(60 156)(61 157)(62 158)(63 159)(64 160)(65 161)(66 162)(67 163)(68 164)(69 165)(70 166)(71 167)(72 168)(73 169)(74 170)(75 171)(76 176)(77 177)(78 178)(79 179)(80 180)(81 181)(82 182)(83 183)(84 184)(85 185)(86 186)(87 187)(88 188)(89 189)(90 190)(91 191)(92 192)(93 193)(94 194)(95 195)(96 196)(97 197)(98 198)(99 199)(100 200)
(1 77 35 52)(2 78 36 53)(3 79 37 54)(4 80 38 55)(5 81 39 56)(6 82 40 57)(7 83 41 58)(8 84 42 59)(9 85 43 60)(10 86 44 61)(11 87 45 62)(12 88 46 63)(13 89 47 64)(14 90 48 65)(15 91 49 66)(16 92 50 67)(17 93 26 68)(18 94 27 69)(19 95 28 70)(20 96 29 71)(21 97 30 72)(22 98 31 73)(23 99 32 74)(24 100 33 75)(25 76 34 51)(101 193 138 164)(102 194 139 165)(103 195 140 166)(104 196 141 167)(105 197 142 168)(106 198 143 169)(107 199 144 170)(108 200 145 171)(109 176 146 172)(110 177 147 173)(111 178 148 174)(112 179 149 175)(113 180 150 151)(114 181 126 152)(115 182 127 153)(116 183 128 154)(117 184 129 155)(118 185 130 156)(119 186 131 157)(120 187 132 158)(121 188 133 159)(122 189 134 160)(123 190 135 161)(124 191 136 162)(125 192 137 163)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125)(126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175)(176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(44 50)(45 49)(46 48)(51 52)(53 75)(54 74)(55 73)(56 72)(57 71)(58 70)(59 69)(60 68)(61 67)(62 66)(63 65)(76 77)(78 100)(79 99)(80 98)(81 97)(82 96)(83 95)(84 94)(85 93)(86 92)(87 91)(88 90)(101 118)(102 117)(103 116)(104 115)(105 114)(106 113)(107 112)(108 111)(109 110)(119 125)(120 124)(121 123)(126 142)(127 141)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)(143 150)(144 149)(145 148)(146 147)(151 169)(152 168)(153 167)(154 166)(155 165)(156 164)(157 163)(158 162)(159 161)(170 175)(171 174)(172 173)(176 177)(178 200)(179 199)(180 198)(181 197)(182 196)(183 195)(184 194)(185 193)(186 192)(187 191)(188 190)
G:=sub<Sym(200)| (1,110)(2,111)(3,112)(4,113)(5,114)(6,115)(7,116)(8,117)(9,118)(10,119)(11,120)(12,121)(13,122)(14,123)(15,124)(16,125)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,148)(37,149)(38,150)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,172)(52,173)(53,174)(54,175)(55,151)(56,152)(57,153)(58,154)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,161)(66,162)(67,163)(68,164)(69,165)(70,166)(71,167)(72,168)(73,169)(74,170)(75,171)(76,176)(77,177)(78,178)(79,179)(80,180)(81,181)(82,182)(83,183)(84,184)(85,185)(86,186)(87,187)(88,188)(89,189)(90,190)(91,191)(92,192)(93,193)(94,194)(95,195)(96,196)(97,197)(98,198)(99,199)(100,200), (1,77,35,52)(2,78,36,53)(3,79,37,54)(4,80,38,55)(5,81,39,56)(6,82,40,57)(7,83,41,58)(8,84,42,59)(9,85,43,60)(10,86,44,61)(11,87,45,62)(12,88,46,63)(13,89,47,64)(14,90,48,65)(15,91,49,66)(16,92,50,67)(17,93,26,68)(18,94,27,69)(19,95,28,70)(20,96,29,71)(21,97,30,72)(22,98,31,73)(23,99,32,74)(24,100,33,75)(25,76,34,51)(101,193,138,164)(102,194,139,165)(103,195,140,166)(104,196,141,167)(105,197,142,168)(106,198,143,169)(107,199,144,170)(108,200,145,171)(109,176,146,172)(110,177,147,173)(111,178,148,174)(112,179,149,175)(113,180,150,151)(114,181,126,152)(115,182,127,153)(116,183,128,154)(117,184,129,155)(118,185,130,156)(119,186,131,157)(120,187,132,158)(121,188,133,159)(122,189,134,160)(123,190,135,161)(124,191,136,162)(125,192,137,163), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(44,50)(45,49)(46,48)(51,52)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)(76,77)(78,100)(79,99)(80,98)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(101,118)(102,117)(103,116)(104,115)(105,114)(106,113)(107,112)(108,111)(109,110)(119,125)(120,124)(121,123)(126,142)(127,141)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(143,150)(144,149)(145,148)(146,147)(151,169)(152,168)(153,167)(154,166)(155,165)(156,164)(157,163)(158,162)(159,161)(170,175)(171,174)(172,173)(176,177)(178,200)(179,199)(180,198)(181,197)(182,196)(183,195)(184,194)(185,193)(186,192)(187,191)(188,190)>;
G:=Group( (1,110)(2,111)(3,112)(4,113)(5,114)(6,115)(7,116)(8,117)(9,118)(10,119)(11,120)(12,121)(13,122)(14,123)(15,124)(16,125)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,148)(37,149)(38,150)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,172)(52,173)(53,174)(54,175)(55,151)(56,152)(57,153)(58,154)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,161)(66,162)(67,163)(68,164)(69,165)(70,166)(71,167)(72,168)(73,169)(74,170)(75,171)(76,176)(77,177)(78,178)(79,179)(80,180)(81,181)(82,182)(83,183)(84,184)(85,185)(86,186)(87,187)(88,188)(89,189)(90,190)(91,191)(92,192)(93,193)(94,194)(95,195)(96,196)(97,197)(98,198)(99,199)(100,200), (1,77,35,52)(2,78,36,53)(3,79,37,54)(4,80,38,55)(5,81,39,56)(6,82,40,57)(7,83,41,58)(8,84,42,59)(9,85,43,60)(10,86,44,61)(11,87,45,62)(12,88,46,63)(13,89,47,64)(14,90,48,65)(15,91,49,66)(16,92,50,67)(17,93,26,68)(18,94,27,69)(19,95,28,70)(20,96,29,71)(21,97,30,72)(22,98,31,73)(23,99,32,74)(24,100,33,75)(25,76,34,51)(101,193,138,164)(102,194,139,165)(103,195,140,166)(104,196,141,167)(105,197,142,168)(106,198,143,169)(107,199,144,170)(108,200,145,171)(109,176,146,172)(110,177,147,173)(111,178,148,174)(112,179,149,175)(113,180,150,151)(114,181,126,152)(115,182,127,153)(116,183,128,154)(117,184,129,155)(118,185,130,156)(119,186,131,157)(120,187,132,158)(121,188,133,159)(122,189,134,160)(123,190,135,161)(124,191,136,162)(125,192,137,163), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(44,50)(45,49)(46,48)(51,52)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)(76,77)(78,100)(79,99)(80,98)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(101,118)(102,117)(103,116)(104,115)(105,114)(106,113)(107,112)(108,111)(109,110)(119,125)(120,124)(121,123)(126,142)(127,141)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(143,150)(144,149)(145,148)(146,147)(151,169)(152,168)(153,167)(154,166)(155,165)(156,164)(157,163)(158,162)(159,161)(170,175)(171,174)(172,173)(176,177)(178,200)(179,199)(180,198)(181,197)(182,196)(183,195)(184,194)(185,193)(186,192)(187,191)(188,190) );
G=PermutationGroup([[(1,110),(2,111),(3,112),(4,113),(5,114),(6,115),(7,116),(8,117),(9,118),(10,119),(11,120),(12,121),(13,122),(14,123),(15,124),(16,125),(17,101),(18,102),(19,103),(20,104),(21,105),(22,106),(23,107),(24,108),(25,109),(26,138),(27,139),(28,140),(29,141),(30,142),(31,143),(32,144),(33,145),(34,146),(35,147),(36,148),(37,149),(38,150),(39,126),(40,127),(41,128),(42,129),(43,130),(44,131),(45,132),(46,133),(47,134),(48,135),(49,136),(50,137),(51,172),(52,173),(53,174),(54,175),(55,151),(56,152),(57,153),(58,154),(59,155),(60,156),(61,157),(62,158),(63,159),(64,160),(65,161),(66,162),(67,163),(68,164),(69,165),(70,166),(71,167),(72,168),(73,169),(74,170),(75,171),(76,176),(77,177),(78,178),(79,179),(80,180),(81,181),(82,182),(83,183),(84,184),(85,185),(86,186),(87,187),(88,188),(89,189),(90,190),(91,191),(92,192),(93,193),(94,194),(95,195),(96,196),(97,197),(98,198),(99,199),(100,200)], [(1,77,35,52),(2,78,36,53),(3,79,37,54),(4,80,38,55),(5,81,39,56),(6,82,40,57),(7,83,41,58),(8,84,42,59),(9,85,43,60),(10,86,44,61),(11,87,45,62),(12,88,46,63),(13,89,47,64),(14,90,48,65),(15,91,49,66),(16,92,50,67),(17,93,26,68),(18,94,27,69),(19,95,28,70),(20,96,29,71),(21,97,30,72),(22,98,31,73),(23,99,32,74),(24,100,33,75),(25,76,34,51),(101,193,138,164),(102,194,139,165),(103,195,140,166),(104,196,141,167),(105,197,142,168),(106,198,143,169),(107,199,144,170),(108,200,145,171),(109,176,146,172),(110,177,147,173),(111,178,148,174),(112,179,149,175),(113,180,150,151),(114,181,126,152),(115,182,127,153),(116,183,128,154),(117,184,129,155),(118,185,130,156),(119,186,131,157),(120,187,132,158),(121,188,133,159),(122,189,134,160),(123,190,135,161),(124,191,136,162),(125,192,137,163)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125),(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175),(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(44,50),(45,49),(46,48),(51,52),(53,75),(54,74),(55,73),(56,72),(57,71),(58,70),(59,69),(60,68),(61,67),(62,66),(63,65),(76,77),(78,100),(79,99),(80,98),(81,97),(82,96),(83,95),(84,94),(85,93),(86,92),(87,91),(88,90),(101,118),(102,117),(103,116),(104,115),(105,114),(106,113),(107,112),(108,111),(109,110),(119,125),(120,124),(121,123),(126,142),(127,141),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135),(143,150),(144,149),(145,148),(146,147),(151,169),(152,168),(153,167),(154,166),(155,165),(156,164),(157,163),(158,162),(159,161),(170,175),(171,174),(172,173),(176,177),(178,200),(179,199),(180,198),(181,197),(182,196),(183,195),(184,194),(185,193),(186,192),(187,191),(188,190)]])
112 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20H | 25A | ··· | 25J | 50A | ··· | 50AD | 100A | ··· | 100AN |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 25 | ··· | 25 | 50 | ··· | 50 | 100 | ··· | 100 |
| size | 1 | 1 | 1 | 1 | 25 | 25 | 25 | 25 | 1 | 1 | 1 | 1 | 25 | 25 | 25 | 25 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
112 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + | + | + | |||
| image | C1 | C2 | C2 | C2 | C2 | C4 | D5 | D10 | D10 | C4×D5 | D25 | D50 | D50 | C4×D25 |
| kernel | C2×C4×D25 | C4×D25 | C2×Dic25 | C2×C100 | C22×D25 | D50 | C2×C20 | C20 | C2×C10 | C10 | C2×C4 | C4 | C22 | C2 |
| # reps | 1 | 4 | 1 | 1 | 1 | 8 | 2 | 4 | 2 | 8 | 10 | 20 | 10 | 40 |
Matrix representation of C2×C4×D25 ►in GL4(𝔽101) generated by
| 100 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 |
| 0 | 91 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 46 | 52 |
| 0 | 0 | 49 | 62 |
| 100 | 0 | 0 | 0 |
| 0 | 100 | 0 | 0 |
| 0 | 0 | 46 | 52 |
| 0 | 0 | 4 | 55 |
G:=sub<GL(4,GF(101))| [100,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,91,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,46,49,0,0,52,62],[100,0,0,0,0,100,0,0,0,0,46,4,0,0,52,55] >;
C2×C4×D25 in GAP, Magma, Sage, TeX
C_2\times C_4\times D_{25} % in TeX
G:=Group("C2xC4xD25"); // GroupNames label
G:=SmallGroup(400,36);
// by ID
G=gap.SmallGroup(400,36);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,50,4324,628,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^25=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations