Copied to
clipboard

G = D206order 412 = 22·103

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D206, C2×D103, C206⋊C2, C103⋊C22, sometimes denoted D412 or Dih206 or Dih412, SmallGroup(412,3)

Series: Derived Chief Lower central Upper central

C1C103 — D206
C1C103D103 — D206
C103 — D206
C1C2

Generators and relations for D206
 G = < a,b | a206=b2=1, bab=a-1 >

103C2
103C2
103C22

Smallest permutation representation of D206
On 206 points
Generators in S206
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206)
(1 206)(2 205)(3 204)(4 203)(5 202)(6 201)(7 200)(8 199)(9 198)(10 197)(11 196)(12 195)(13 194)(14 193)(15 192)(16 191)(17 190)(18 189)(19 188)(20 187)(21 186)(22 185)(23 184)(24 183)(25 182)(26 181)(27 180)(28 179)(29 178)(30 177)(31 176)(32 175)(33 174)(34 173)(35 172)(36 171)(37 170)(38 169)(39 168)(40 167)(41 166)(42 165)(43 164)(44 163)(45 162)(46 161)(47 160)(48 159)(49 158)(50 157)(51 156)(52 155)(53 154)(54 153)(55 152)(56 151)(57 150)(58 149)(59 148)(60 147)(61 146)(62 145)(63 144)(64 143)(65 142)(66 141)(67 140)(68 139)(69 138)(70 137)(71 136)(72 135)(73 134)(74 133)(75 132)(76 131)(77 130)(78 129)(79 128)(80 127)(81 126)(82 125)(83 124)(84 123)(85 122)(86 121)(87 120)(88 119)(89 118)(90 117)(91 116)(92 115)(93 114)(94 113)(95 112)(96 111)(97 110)(98 109)(99 108)(100 107)(101 106)(102 105)(103 104)

G:=sub<Sym(206)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206), (1,206)(2,205)(3,204)(4,203)(5,202)(6,201)(7,200)(8,199)(9,198)(10,197)(11,196)(12,195)(13,194)(14,193)(15,192)(16,191)(17,190)(18,189)(19,188)(20,187)(21,186)(22,185)(23,184)(24,183)(25,182)(26,181)(27,180)(28,179)(29,178)(30,177)(31,176)(32,175)(33,174)(34,173)(35,172)(36,171)(37,170)(38,169)(39,168)(40,167)(41,166)(42,165)(43,164)(44,163)(45,162)(46,161)(47,160)(48,159)(49,158)(50,157)(51,156)(52,155)(53,154)(54,153)(55,152)(56,151)(57,150)(58,149)(59,148)(60,147)(61,146)(62,145)(63,144)(64,143)(65,142)(66,141)(67,140)(68,139)(69,138)(70,137)(71,136)(72,135)(73,134)(74,133)(75,132)(76,131)(77,130)(78,129)(79,128)(80,127)(81,126)(82,125)(83,124)(84,123)(85,122)(86,121)(87,120)(88,119)(89,118)(90,117)(91,116)(92,115)(93,114)(94,113)(95,112)(96,111)(97,110)(98,109)(99,108)(100,107)(101,106)(102,105)(103,104)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206), (1,206)(2,205)(3,204)(4,203)(5,202)(6,201)(7,200)(8,199)(9,198)(10,197)(11,196)(12,195)(13,194)(14,193)(15,192)(16,191)(17,190)(18,189)(19,188)(20,187)(21,186)(22,185)(23,184)(24,183)(25,182)(26,181)(27,180)(28,179)(29,178)(30,177)(31,176)(32,175)(33,174)(34,173)(35,172)(36,171)(37,170)(38,169)(39,168)(40,167)(41,166)(42,165)(43,164)(44,163)(45,162)(46,161)(47,160)(48,159)(49,158)(50,157)(51,156)(52,155)(53,154)(54,153)(55,152)(56,151)(57,150)(58,149)(59,148)(60,147)(61,146)(62,145)(63,144)(64,143)(65,142)(66,141)(67,140)(68,139)(69,138)(70,137)(71,136)(72,135)(73,134)(74,133)(75,132)(76,131)(77,130)(78,129)(79,128)(80,127)(81,126)(82,125)(83,124)(84,123)(85,122)(86,121)(87,120)(88,119)(89,118)(90,117)(91,116)(92,115)(93,114)(94,113)(95,112)(96,111)(97,110)(98,109)(99,108)(100,107)(101,106)(102,105)(103,104) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206)], [(1,206),(2,205),(3,204),(4,203),(5,202),(6,201),(7,200),(8,199),(9,198),(10,197),(11,196),(12,195),(13,194),(14,193),(15,192),(16,191),(17,190),(18,189),(19,188),(20,187),(21,186),(22,185),(23,184),(24,183),(25,182),(26,181),(27,180),(28,179),(29,178),(30,177),(31,176),(32,175),(33,174),(34,173),(35,172),(36,171),(37,170),(38,169),(39,168),(40,167),(41,166),(42,165),(43,164),(44,163),(45,162),(46,161),(47,160),(48,159),(49,158),(50,157),(51,156),(52,155),(53,154),(54,153),(55,152),(56,151),(57,150),(58,149),(59,148),(60,147),(61,146),(62,145),(63,144),(64,143),(65,142),(66,141),(67,140),(68,139),(69,138),(70,137),(71,136),(72,135),(73,134),(74,133),(75,132),(76,131),(77,130),(78,129),(79,128),(80,127),(81,126),(82,125),(83,124),(84,123),(85,122),(86,121),(87,120),(88,119),(89,118),(90,117),(91,116),(92,115),(93,114),(94,113),(95,112),(96,111),(97,110),(98,109),(99,108),(100,107),(101,106),(102,105),(103,104)])

106 conjugacy classes

class 1 2A2B2C103A···103AY206A···206AY
order1222103···103206···206
size111031032···22···2

106 irreducible representations

dim11122
type+++++
imageC1C2C2D103D206
kernelD206D103C206C2C1
# reps1215151

Matrix representation of D206 in GL2(𝔽619) generated by

361311
30651
,
34401
99585
G:=sub<GL(2,GF(619))| [361,306,311,51],[34,99,401,585] >;

D206 in GAP, Magma, Sage, TeX

D_{206}
% in TeX

G:=Group("D206");
// GroupNames label

G:=SmallGroup(412,3);
// by ID

G=gap.SmallGroup(412,3);
# by ID

G:=PCGroup([3,-2,-2,-103,3674]);
// Polycyclic

G:=Group<a,b|a^206=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D206 in TeX

׿
×
𝔽