Extensions 1→N→G→Q→1 with N=C13⋊D4 and Q=C22

Direct product G=N×Q with N=C13⋊D4 and Q=C22

Semidirect products G=N:Q with N=C13⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C13⋊D41C22 = C2×D4×D13φ: C22/C2C2 ⊆ Out C13⋊D4104C13:D4:1C2^2416,216
C13⋊D42C22 = C2×D42D13φ: C22/C2C2 ⊆ Out C13⋊D4208C13:D4:2C2^2416,217
C13⋊D43C22 = D46D26φ: C22/C2C2 ⊆ Out C13⋊D41044C13:D4:3C2^2416,218
C13⋊D44C22 = C4○D4×D13φ: C22/C2C2 ⊆ Out C13⋊D41044C13:D4:4C2^2416,222
C13⋊D45C22 = D48D26φ: C22/C2C2 ⊆ Out C13⋊D41044+C13:D4:5C2^2416,223
C13⋊D46C22 = C2×D525C2φ: trivial image208C13:D4:6C2^2416,215

Non-split extensions G=N.Q with N=C13⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C13⋊D4.C22 = D4.10D26φ: C22/C2C2 ⊆ Out C13⋊D42084-C13:D4.C2^2416,224
C13⋊D4.2C22 = Q8.10D26φ: trivial image2084C13:D4.2C2^2416,221