direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D52⋊5C2, C26.4C24, D52⋊12C22, C52.43C23, D26.1C23, C23.26D26, Dic26⋊11C22, Dic13.2C23, (C2×C4)⋊10D26, (C2×D52)⋊14C2, C26⋊1(C4○D4), (C22×C52)⋊8C2, (C22×C4)⋊6D13, (C2×C52)⋊13C22, (C4×D13)⋊6C22, C13⋊D4⋊6C22, C2.5(C23×D13), (C2×Dic26)⋊15C2, (C2×C26).65C23, C4.43(C22×D13), C22.5(C22×D13), (C22×C26).46C22, (C2×Dic13).46C22, (C22×D13).31C22, C13⋊1(C2×C4○D4), (C2×C4×D13)⋊15C2, (C2×C13⋊D4)⋊12C2, SmallGroup(416,215)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D52⋊5C2
G = < a,b,c,d | a2=b52=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd=b26c >
Subgroups: 992 in 164 conjugacy classes, 89 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C13, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, D13, C26, C26, C26, C2×C4○D4, Dic13, C52, D26, D26, C2×C26, C2×C26, C2×C26, Dic26, C4×D13, D52, C2×Dic13, C13⋊D4, C2×C52, C2×C52, C22×D13, C22×C26, C2×Dic26, C2×C4×D13, C2×D52, D52⋊5C2, C2×C13⋊D4, C22×C52, C2×D52⋊5C2
Quotients: C1, C2, C22, C23, C4○D4, C24, D13, C2×C4○D4, D26, C22×D13, D52⋊5C2, C23×D13, C2×D52⋊5C2
(1 136)(2 137)(3 138)(4 139)(5 140)(6 141)(7 142)(8 143)(9 144)(10 145)(11 146)(12 147)(13 148)(14 149)(15 150)(16 151)(17 152)(18 153)(19 154)(20 155)(21 156)(22 105)(23 106)(24 107)(25 108)(26 109)(27 110)(28 111)(29 112)(30 113)(31 114)(32 115)(33 116)(34 117)(35 118)(36 119)(37 120)(38 121)(39 122)(40 123)(41 124)(42 125)(43 126)(44 127)(45 128)(46 129)(47 130)(48 131)(49 132)(50 133)(51 134)(52 135)(53 171)(54 172)(55 173)(56 174)(57 175)(58 176)(59 177)(60 178)(61 179)(62 180)(63 181)(64 182)(65 183)(66 184)(67 185)(68 186)(69 187)(70 188)(71 189)(72 190)(73 191)(74 192)(75 193)(76 194)(77 195)(78 196)(79 197)(80 198)(81 199)(82 200)(83 201)(84 202)(85 203)(86 204)(87 205)(88 206)(89 207)(90 208)(91 157)(92 158)(93 159)(94 160)(95 161)(96 162)(97 163)(98 164)(99 165)(100 166)(101 167)(102 168)(103 169)(104 170)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 28)(26 27)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(61 62)(71 104)(72 103)(73 102)(74 101)(75 100)(76 99)(77 98)(78 97)(79 96)(80 95)(81 94)(82 93)(83 92)(84 91)(85 90)(86 89)(87 88)(105 114)(106 113)(107 112)(108 111)(109 110)(115 156)(116 155)(117 154)(118 153)(119 152)(120 151)(121 150)(122 149)(123 148)(124 147)(125 146)(126 145)(127 144)(128 143)(129 142)(130 141)(131 140)(132 139)(133 138)(134 137)(135 136)(157 202)(158 201)(159 200)(160 199)(161 198)(162 197)(163 196)(164 195)(165 194)(166 193)(167 192)(168 191)(169 190)(170 189)(171 188)(172 187)(173 186)(174 185)(175 184)(176 183)(177 182)(178 181)(179 180)(203 208)(204 207)(205 206)
(1 101)(2 102)(3 103)(4 104)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)(49 97)(50 98)(51 99)(52 100)(105 188)(106 189)(107 190)(108 191)(109 192)(110 193)(111 194)(112 195)(113 196)(114 197)(115 198)(116 199)(117 200)(118 201)(119 202)(120 203)(121 204)(122 205)(123 206)(124 207)(125 208)(126 157)(127 158)(128 159)(129 160)(130 161)(131 162)(132 163)(133 164)(134 165)(135 166)(136 167)(137 168)(138 169)(139 170)(140 171)(141 172)(142 173)(143 174)(144 175)(145 176)(146 177)(147 178)(148 179)(149 180)(150 181)(151 182)(152 183)(153 184)(154 185)(155 186)(156 187)
G:=sub<Sym(208)| (1,136)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,156)(22,105)(23,106)(24,107)(25,108)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,120)(38,121)(39,122)(40,123)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,171)(54,172)(55,173)(56,174)(57,175)(58,176)(59,177)(60,178)(61,179)(62,180)(63,181)(64,182)(65,183)(66,184)(67,185)(68,186)(69,187)(70,188)(71,189)(72,190)(73,191)(74,192)(75,193)(76,194)(77,195)(78,196)(79,197)(80,198)(81,199)(82,200)(83,201)(84,202)(85,203)(86,204)(87,205)(88,206)(89,207)(90,208)(91,157)(92,158)(93,159)(94,160)(95,161)(96,162)(97,163)(98,164)(99,165)(100,166)(101,167)(102,168)(103,169)(104,170), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(71,104)(72,103)(73,102)(74,101)(75,100)(76,99)(77,98)(78,97)(79,96)(80,95)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(105,114)(106,113)(107,112)(108,111)(109,110)(115,156)(116,155)(117,154)(118,153)(119,152)(120,151)(121,150)(122,149)(123,148)(124,147)(125,146)(126,145)(127,144)(128,143)(129,142)(130,141)(131,140)(132,139)(133,138)(134,137)(135,136)(157,202)(158,201)(159,200)(160,199)(161,198)(162,197)(163,196)(164,195)(165,194)(166,193)(167,192)(168,191)(169,190)(170,189)(171,188)(172,187)(173,186)(174,185)(175,184)(176,183)(177,182)(178,181)(179,180)(203,208)(204,207)(205,206), (1,101)(2,102)(3,103)(4,104)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,99)(52,100)(105,188)(106,189)(107,190)(108,191)(109,192)(110,193)(111,194)(112,195)(113,196)(114,197)(115,198)(116,199)(117,200)(118,201)(119,202)(120,203)(121,204)(122,205)(123,206)(124,207)(125,208)(126,157)(127,158)(128,159)(129,160)(130,161)(131,162)(132,163)(133,164)(134,165)(135,166)(136,167)(137,168)(138,169)(139,170)(140,171)(141,172)(142,173)(143,174)(144,175)(145,176)(146,177)(147,178)(148,179)(149,180)(150,181)(151,182)(152,183)(153,184)(154,185)(155,186)(156,187)>;
G:=Group( (1,136)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,156)(22,105)(23,106)(24,107)(25,108)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,120)(38,121)(39,122)(40,123)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,171)(54,172)(55,173)(56,174)(57,175)(58,176)(59,177)(60,178)(61,179)(62,180)(63,181)(64,182)(65,183)(66,184)(67,185)(68,186)(69,187)(70,188)(71,189)(72,190)(73,191)(74,192)(75,193)(76,194)(77,195)(78,196)(79,197)(80,198)(81,199)(82,200)(83,201)(84,202)(85,203)(86,204)(87,205)(88,206)(89,207)(90,208)(91,157)(92,158)(93,159)(94,160)(95,161)(96,162)(97,163)(98,164)(99,165)(100,166)(101,167)(102,168)(103,169)(104,170), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(71,104)(72,103)(73,102)(74,101)(75,100)(76,99)(77,98)(78,97)(79,96)(80,95)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(105,114)(106,113)(107,112)(108,111)(109,110)(115,156)(116,155)(117,154)(118,153)(119,152)(120,151)(121,150)(122,149)(123,148)(124,147)(125,146)(126,145)(127,144)(128,143)(129,142)(130,141)(131,140)(132,139)(133,138)(134,137)(135,136)(157,202)(158,201)(159,200)(160,199)(161,198)(162,197)(163,196)(164,195)(165,194)(166,193)(167,192)(168,191)(169,190)(170,189)(171,188)(172,187)(173,186)(174,185)(175,184)(176,183)(177,182)(178,181)(179,180)(203,208)(204,207)(205,206), (1,101)(2,102)(3,103)(4,104)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,99)(52,100)(105,188)(106,189)(107,190)(108,191)(109,192)(110,193)(111,194)(112,195)(113,196)(114,197)(115,198)(116,199)(117,200)(118,201)(119,202)(120,203)(121,204)(122,205)(123,206)(124,207)(125,208)(126,157)(127,158)(128,159)(129,160)(130,161)(131,162)(132,163)(133,164)(134,165)(135,166)(136,167)(137,168)(138,169)(139,170)(140,171)(141,172)(142,173)(143,174)(144,175)(145,176)(146,177)(147,178)(148,179)(149,180)(150,181)(151,182)(152,183)(153,184)(154,185)(155,186)(156,187) );
G=PermutationGroup([[(1,136),(2,137),(3,138),(4,139),(5,140),(6,141),(7,142),(8,143),(9,144),(10,145),(11,146),(12,147),(13,148),(14,149),(15,150),(16,151),(17,152),(18,153),(19,154),(20,155),(21,156),(22,105),(23,106),(24,107),(25,108),(26,109),(27,110),(28,111),(29,112),(30,113),(31,114),(32,115),(33,116),(34,117),(35,118),(36,119),(37,120),(38,121),(39,122),(40,123),(41,124),(42,125),(43,126),(44,127),(45,128),(46,129),(47,130),(48,131),(49,132),(50,133),(51,134),(52,135),(53,171),(54,172),(55,173),(56,174),(57,175),(58,176),(59,177),(60,178),(61,179),(62,180),(63,181),(64,182),(65,183),(66,184),(67,185),(68,186),(69,187),(70,188),(71,189),(72,190),(73,191),(74,192),(75,193),(76,194),(77,195),(78,196),(79,197),(80,198),(81,199),(82,200),(83,201),(84,202),(85,203),(86,204),(87,205),(88,206),(89,207),(90,208),(91,157),(92,158),(93,159),(94,160),(95,161),(96,162),(97,163),(98,164),(99,165),(100,166),(101,167),(102,168),(103,169),(104,170)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,28),(26,27),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(61,62),(71,104),(72,103),(73,102),(74,101),(75,100),(76,99),(77,98),(78,97),(79,96),(80,95),(81,94),(82,93),(83,92),(84,91),(85,90),(86,89),(87,88),(105,114),(106,113),(107,112),(108,111),(109,110),(115,156),(116,155),(117,154),(118,153),(119,152),(120,151),(121,150),(122,149),(123,148),(124,147),(125,146),(126,145),(127,144),(128,143),(129,142),(130,141),(131,140),(132,139),(133,138),(134,137),(135,136),(157,202),(158,201),(159,200),(160,199),(161,198),(162,197),(163,196),(164,195),(165,194),(166,193),(167,192),(168,191),(169,190),(170,189),(171,188),(172,187),(173,186),(174,185),(175,184),(176,183),(177,182),(178,181),(179,180),(203,208),(204,207),(205,206)], [(1,101),(2,102),(3,103),(4,104),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96),(49,97),(50,98),(51,99),(52,100),(105,188),(106,189),(107,190),(108,191),(109,192),(110,193),(111,194),(112,195),(113,196),(114,197),(115,198),(116,199),(117,200),(118,201),(119,202),(120,203),(121,204),(122,205),(123,206),(124,207),(125,208),(126,157),(127,158),(128,159),(129,160),(130,161),(131,162),(132,163),(133,164),(134,165),(135,166),(136,167),(137,168),(138,169),(139,170),(140,171),(141,172),(142,173),(143,174),(144,175),(145,176),(146,177),(147,178),(148,179),(149,180),(150,181),(151,182),(152,183),(153,184),(154,185),(155,186),(156,187)]])
116 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 13A | ··· | 13F | 26A | ··· | 26AP | 52A | ··· | 52AV |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 26 | 26 | 26 | 26 | 1 | 1 | 1 | 1 | 2 | 2 | 26 | 26 | 26 | 26 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
116 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | D13 | D26 | D26 | D52⋊5C2 |
kernel | C2×D52⋊5C2 | C2×Dic26 | C2×C4×D13 | C2×D52 | D52⋊5C2 | C2×C13⋊D4 | C22×C52 | C26 | C22×C4 | C2×C4 | C23 | C2 |
# reps | 1 | 1 | 2 | 1 | 8 | 2 | 1 | 4 | 6 | 36 | 6 | 48 |
Matrix representation of C2×D52⋊5C2 ►in GL3(𝔽53) generated by
52 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 50 | 38 |
0 | 31 | 31 |
52 | 0 | 0 |
0 | 45 | 32 |
0 | 3 | 8 |
52 | 0 | 0 |
0 | 6 | 24 |
0 | 14 | 47 |
G:=sub<GL(3,GF(53))| [52,0,0,0,1,0,0,0,1],[1,0,0,0,50,31,0,38,31],[52,0,0,0,45,3,0,32,8],[52,0,0,0,6,14,0,24,47] >;
C2×D52⋊5C2 in GAP, Magma, Sage, TeX
C_2\times D_{52}\rtimes_5C_2
% in TeX
G:=Group("C2xD52:5C2");
// GroupNames label
G:=SmallGroup(416,215);
// by ID
G=gap.SmallGroup(416,215);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,86,579,13829]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^52=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d=b^26*c>;
// generators/relations