Extensions 1→N→G→Q→1 with N=C26 and Q=C2×Q8

Direct product G=N×Q with N=C26 and Q=C2×Q8
dρLabelID
Q8×C2×C26416Q8xC2xC26416,229

Semidirect products G=N:Q with N=C26 and Q=C2×Q8
extensionφ:Q→Aut NdρLabelID
C261(C2×Q8) = C22×Dic26φ: C2×Q8/C2×C4C2 ⊆ Aut C26416C26:1(C2xQ8)416,212
C262(C2×Q8) = C2×Q8×D13φ: C2×Q8/Q8C2 ⊆ Aut C26208C26:2(C2xQ8)416,219

Non-split extensions G=N.Q with N=C26 and Q=C2×Q8
extensionφ:Q→Aut NdρLabelID
C26.1(C2×Q8) = C4×Dic26φ: C2×Q8/C2×C4C2 ⊆ Aut C26416C26.1(C2xQ8)416,89
C26.2(C2×Q8) = C522Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C26416C26.2(C2xQ8)416,90
C26.3(C2×Q8) = C52.6Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C26416C26.3(C2xQ8)416,91
C26.4(C2×Q8) = C22⋊Dic26φ: C2×Q8/C2×C4C2 ⊆ Aut C26208C26.4(C2xQ8)416,99
C26.5(C2×Q8) = C52⋊Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C26416C26.5(C2xQ8)416,109
C26.6(C2×Q8) = C4.Dic26φ: C2×Q8/C2×C4C2 ⊆ Aut C26416C26.6(C2xQ8)416,111
C26.7(C2×Q8) = C2×C26.D4φ: C2×Q8/C2×C4C2 ⊆ Aut C26416C26.7(C2xQ8)416,144
C26.8(C2×Q8) = C52.48D4φ: C2×Q8/C2×C4C2 ⊆ Aut C26208C26.8(C2xQ8)416,145
C26.9(C2×Q8) = C2×C523C4φ: C2×Q8/C2×C4C2 ⊆ Aut C26416C26.9(C2xQ8)416,146
C26.10(C2×Q8) = Dic133Q8φ: C2×Q8/Q8C2 ⊆ Aut C26416C26.10(C2xQ8)416,108
C26.11(C2×Q8) = Dic13.Q8φ: C2×Q8/Q8C2 ⊆ Aut C26416C26.11(C2xQ8)416,110
C26.12(C2×Q8) = C4⋊C4×D13φ: C2×Q8/Q8C2 ⊆ Aut C26208C26.12(C2xQ8)416,112
C26.13(C2×Q8) = D26⋊Q8φ: C2×Q8/Q8C2 ⊆ Aut C26208C26.13(C2xQ8)416,117
C26.14(C2×Q8) = D262Q8φ: C2×Q8/Q8C2 ⊆ Aut C26208C26.14(C2xQ8)416,118
C26.15(C2×Q8) = Dic13⋊Q8φ: C2×Q8/Q8C2 ⊆ Aut C26416C26.15(C2xQ8)416,165
C26.16(C2×Q8) = Q8×Dic13φ: C2×Q8/Q8C2 ⊆ Aut C26416C26.16(C2xQ8)416,166
C26.17(C2×Q8) = D263Q8φ: C2×Q8/Q8C2 ⊆ Aut C26208C26.17(C2xQ8)416,167
C26.18(C2×Q8) = C4⋊C4×C26central extension (φ=1)416C26.18(C2xQ8)416,177
C26.19(C2×Q8) = Q8×C52central extension (φ=1)416C26.19(C2xQ8)416,180
C26.20(C2×Q8) = C13×C22⋊Q8central extension (φ=1)208C26.20(C2xQ8)416,183
C26.21(C2×Q8) = C13×C42.C2central extension (φ=1)416C26.21(C2xQ8)416,186
C26.22(C2×Q8) = C13×C4⋊Q8central extension (φ=1)416C26.22(C2xQ8)416,189

׿
×
𝔽