direct product, cyclic, abelian, monomial
Aliases: C26, also denoted Z26, SmallGroup(26,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C26 |
C1 — C26 |
C1 — C26 |
Generators and relations for C26
G = < a | a26=1 >
Character table of C26
class | 1 | 2 | 13A | 13B | 13C | 13D | 13E | 13F | 13G | 13H | 13I | 13J | 13K | 13L | 26A | 26B | 26C | 26D | 26E | 26F | 26G | 26H | 26I | 26J | 26K | 26L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ132 | ζ133 | ζ134 | ζ135 | ζ136 | ζ137 | ζ138 | ζ139 | ζ1310 | ζ1311 | ζ1312 | ζ13 | ζ1312 | ζ132 | ζ133 | ζ134 | ζ135 | ζ136 | ζ137 | ζ138 | ζ139 | ζ1310 | ζ1311 | ζ13 | linear of order 13 |
ρ4 | 1 | -1 | ζ132 | ζ133 | ζ134 | ζ135 | ζ136 | ζ137 | ζ138 | ζ139 | ζ1310 | ζ1311 | ζ1312 | ζ13 | -ζ1312 | -ζ132 | -ζ133 | -ζ134 | -ζ135 | -ζ136 | -ζ137 | -ζ138 | -ζ139 | -ζ1310 | -ζ1311 | -ζ13 | linear of order 26 faithful |
ρ5 | 1 | 1 | ζ134 | ζ136 | ζ138 | ζ1310 | ζ1312 | ζ13 | ζ133 | ζ135 | ζ137 | ζ139 | ζ1311 | ζ132 | ζ1311 | ζ134 | ζ136 | ζ138 | ζ1310 | ζ1312 | ζ13 | ζ133 | ζ135 | ζ137 | ζ139 | ζ132 | linear of order 13 |
ρ6 | 1 | -1 | ζ134 | ζ136 | ζ138 | ζ1310 | ζ1312 | ζ13 | ζ133 | ζ135 | ζ137 | ζ139 | ζ1311 | ζ132 | -ζ1311 | -ζ134 | -ζ136 | -ζ138 | -ζ1310 | -ζ1312 | -ζ13 | -ζ133 | -ζ135 | -ζ137 | -ζ139 | -ζ132 | linear of order 26 faithful |
ρ7 | 1 | 1 | ζ136 | ζ139 | ζ1312 | ζ132 | ζ135 | ζ138 | ζ1311 | ζ13 | ζ134 | ζ137 | ζ1310 | ζ133 | ζ1310 | ζ136 | ζ139 | ζ1312 | ζ132 | ζ135 | ζ138 | ζ1311 | ζ13 | ζ134 | ζ137 | ζ133 | linear of order 13 |
ρ8 | 1 | -1 | ζ136 | ζ139 | ζ1312 | ζ132 | ζ135 | ζ138 | ζ1311 | ζ13 | ζ134 | ζ137 | ζ1310 | ζ133 | -ζ1310 | -ζ136 | -ζ139 | -ζ1312 | -ζ132 | -ζ135 | -ζ138 | -ζ1311 | -ζ13 | -ζ134 | -ζ137 | -ζ133 | linear of order 26 faithful |
ρ9 | 1 | 1 | ζ138 | ζ1312 | ζ133 | ζ137 | ζ1311 | ζ132 | ζ136 | ζ1310 | ζ13 | ζ135 | ζ139 | ζ134 | ζ139 | ζ138 | ζ1312 | ζ133 | ζ137 | ζ1311 | ζ132 | ζ136 | ζ1310 | ζ13 | ζ135 | ζ134 | linear of order 13 |
ρ10 | 1 | -1 | ζ138 | ζ1312 | ζ133 | ζ137 | ζ1311 | ζ132 | ζ136 | ζ1310 | ζ13 | ζ135 | ζ139 | ζ134 | -ζ139 | -ζ138 | -ζ1312 | -ζ133 | -ζ137 | -ζ1311 | -ζ132 | -ζ136 | -ζ1310 | -ζ13 | -ζ135 | -ζ134 | linear of order 26 faithful |
ρ11 | 1 | 1 | ζ1310 | ζ132 | ζ137 | ζ1312 | ζ134 | ζ139 | ζ13 | ζ136 | ζ1311 | ζ133 | ζ138 | ζ135 | ζ138 | ζ1310 | ζ132 | ζ137 | ζ1312 | ζ134 | ζ139 | ζ13 | ζ136 | ζ1311 | ζ133 | ζ135 | linear of order 13 |
ρ12 | 1 | -1 | ζ1310 | ζ132 | ζ137 | ζ1312 | ζ134 | ζ139 | ζ13 | ζ136 | ζ1311 | ζ133 | ζ138 | ζ135 | -ζ138 | -ζ1310 | -ζ132 | -ζ137 | -ζ1312 | -ζ134 | -ζ139 | -ζ13 | -ζ136 | -ζ1311 | -ζ133 | -ζ135 | linear of order 26 faithful |
ρ13 | 1 | 1 | ζ1312 | ζ135 | ζ1311 | ζ134 | ζ1310 | ζ133 | ζ139 | ζ132 | ζ138 | ζ13 | ζ137 | ζ136 | ζ137 | ζ1312 | ζ135 | ζ1311 | ζ134 | ζ1310 | ζ133 | ζ139 | ζ132 | ζ138 | ζ13 | ζ136 | linear of order 13 |
ρ14 | 1 | -1 | ζ1312 | ζ135 | ζ1311 | ζ134 | ζ1310 | ζ133 | ζ139 | ζ132 | ζ138 | ζ13 | ζ137 | ζ136 | -ζ137 | -ζ1312 | -ζ135 | -ζ1311 | -ζ134 | -ζ1310 | -ζ133 | -ζ139 | -ζ132 | -ζ138 | -ζ13 | -ζ136 | linear of order 26 faithful |
ρ15 | 1 | 1 | ζ13 | ζ138 | ζ132 | ζ139 | ζ133 | ζ1310 | ζ134 | ζ1311 | ζ135 | ζ1312 | ζ136 | ζ137 | ζ136 | ζ13 | ζ138 | ζ132 | ζ139 | ζ133 | ζ1310 | ζ134 | ζ1311 | ζ135 | ζ1312 | ζ137 | linear of order 13 |
ρ16 | 1 | -1 | ζ13 | ζ138 | ζ132 | ζ139 | ζ133 | ζ1310 | ζ134 | ζ1311 | ζ135 | ζ1312 | ζ136 | ζ137 | -ζ136 | -ζ13 | -ζ138 | -ζ132 | -ζ139 | -ζ133 | -ζ1310 | -ζ134 | -ζ1311 | -ζ135 | -ζ1312 | -ζ137 | linear of order 26 faithful |
ρ17 | 1 | 1 | ζ133 | ζ1311 | ζ136 | ζ13 | ζ139 | ζ134 | ζ1312 | ζ137 | ζ132 | ζ1310 | ζ135 | ζ138 | ζ135 | ζ133 | ζ1311 | ζ136 | ζ13 | ζ139 | ζ134 | ζ1312 | ζ137 | ζ132 | ζ1310 | ζ138 | linear of order 13 |
ρ18 | 1 | -1 | ζ133 | ζ1311 | ζ136 | ζ13 | ζ139 | ζ134 | ζ1312 | ζ137 | ζ132 | ζ1310 | ζ135 | ζ138 | -ζ135 | -ζ133 | -ζ1311 | -ζ136 | -ζ13 | -ζ139 | -ζ134 | -ζ1312 | -ζ137 | -ζ132 | -ζ1310 | -ζ138 | linear of order 26 faithful |
ρ19 | 1 | 1 | ζ135 | ζ13 | ζ1310 | ζ136 | ζ132 | ζ1311 | ζ137 | ζ133 | ζ1312 | ζ138 | ζ134 | ζ139 | ζ134 | ζ135 | ζ13 | ζ1310 | ζ136 | ζ132 | ζ1311 | ζ137 | ζ133 | ζ1312 | ζ138 | ζ139 | linear of order 13 |
ρ20 | 1 | -1 | ζ135 | ζ13 | ζ1310 | ζ136 | ζ132 | ζ1311 | ζ137 | ζ133 | ζ1312 | ζ138 | ζ134 | ζ139 | -ζ134 | -ζ135 | -ζ13 | -ζ1310 | -ζ136 | -ζ132 | -ζ1311 | -ζ137 | -ζ133 | -ζ1312 | -ζ138 | -ζ139 | linear of order 26 faithful |
ρ21 | 1 | 1 | ζ137 | ζ134 | ζ13 | ζ1311 | ζ138 | ζ135 | ζ132 | ζ1312 | ζ139 | ζ136 | ζ133 | ζ1310 | ζ133 | ζ137 | ζ134 | ζ13 | ζ1311 | ζ138 | ζ135 | ζ132 | ζ1312 | ζ139 | ζ136 | ζ1310 | linear of order 13 |
ρ22 | 1 | -1 | ζ137 | ζ134 | ζ13 | ζ1311 | ζ138 | ζ135 | ζ132 | ζ1312 | ζ139 | ζ136 | ζ133 | ζ1310 | -ζ133 | -ζ137 | -ζ134 | -ζ13 | -ζ1311 | -ζ138 | -ζ135 | -ζ132 | -ζ1312 | -ζ139 | -ζ136 | -ζ1310 | linear of order 26 faithful |
ρ23 | 1 | 1 | ζ139 | ζ137 | ζ135 | ζ133 | ζ13 | ζ1312 | ζ1310 | ζ138 | ζ136 | ζ134 | ζ132 | ζ1311 | ζ132 | ζ139 | ζ137 | ζ135 | ζ133 | ζ13 | ζ1312 | ζ1310 | ζ138 | ζ136 | ζ134 | ζ1311 | linear of order 13 |
ρ24 | 1 | -1 | ζ139 | ζ137 | ζ135 | ζ133 | ζ13 | ζ1312 | ζ1310 | ζ138 | ζ136 | ζ134 | ζ132 | ζ1311 | -ζ132 | -ζ139 | -ζ137 | -ζ135 | -ζ133 | -ζ13 | -ζ1312 | -ζ1310 | -ζ138 | -ζ136 | -ζ134 | -ζ1311 | linear of order 26 faithful |
ρ25 | 1 | 1 | ζ1311 | ζ1310 | ζ139 | ζ138 | ζ137 | ζ136 | ζ135 | ζ134 | ζ133 | ζ132 | ζ13 | ζ1312 | ζ13 | ζ1311 | ζ1310 | ζ139 | ζ138 | ζ137 | ζ136 | ζ135 | ζ134 | ζ133 | ζ132 | ζ1312 | linear of order 13 |
ρ26 | 1 | -1 | ζ1311 | ζ1310 | ζ139 | ζ138 | ζ137 | ζ136 | ζ135 | ζ134 | ζ133 | ζ132 | ζ13 | ζ1312 | -ζ13 | -ζ1311 | -ζ1310 | -ζ139 | -ζ138 | -ζ137 | -ζ136 | -ζ135 | -ζ134 | -ζ133 | -ζ132 | -ζ1312 | linear of order 26 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)
G:=sub<Sym(26)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)]])
G:=TransitiveGroup(26,1);
C26 is a maximal subgroup of
Dic13
Matrix representation of C26 ►in GL1(𝔽53) generated by
4 |
G:=sub<GL(1,GF(53))| [4] >;
C26 in GAP, Magma, Sage, TeX
C_{26}
% in TeX
G:=Group("C26");
// GroupNames label
G:=SmallGroup(26,2);
// by ID
G=gap.SmallGroup(26,2);
# by ID
G:=PCGroup([2,-2,-13]);
// Polycyclic
G:=Group<a|a^26=1>;
// generators/relations
Export
Subgroup lattice of C26 in TeX
Character table of C26 in TeX