Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4×D13

Direct product G=N×Q with N=C2 and Q=C2×C4×D13
dρLabelID
C22×C4×D13208C2^2xC4xD13416,213


Non-split extensions G=N.Q with N=C2 and Q=C2×C4×D13
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4×D13) = C42×D13central extension (φ=1)208C2.1(C2xC4xD13)416,92
C2.2(C2×C4×D13) = C2×C8×D13central extension (φ=1)208C2.2(C2xC4xD13)416,120
C2.3(C2×C4×D13) = C2×C4×Dic13central extension (φ=1)416C2.3(C2xC4xD13)416,143
C2.4(C2×C4×D13) = C4×Dic26central stem extension (φ=1)416C2.4(C2xC4xD13)416,89
C2.5(C2×C4×D13) = C42⋊D13central stem extension (φ=1)208C2.5(C2xC4xD13)416,93
C2.6(C2×C4×D13) = C4×D52central stem extension (φ=1)208C2.6(C2xC4xD13)416,94
C2.7(C2×C4×D13) = C23.11D26central stem extension (φ=1)208C2.7(C2xC4xD13)416,98
C2.8(C2×C4×D13) = C22⋊C4×D13central stem extension (φ=1)104C2.8(C2xC4xD13)416,101
C2.9(C2×C4×D13) = Dic134D4central stem extension (φ=1)208C2.9(C2xC4xD13)416,102
C2.10(C2×C4×D13) = Dic133Q8central stem extension (φ=1)416C2.10(C2xC4xD13)416,108
C2.11(C2×C4×D13) = C4⋊C4×D13central stem extension (φ=1)208C2.11(C2xC4xD13)416,112
C2.12(C2×C4×D13) = C4⋊C47D13central stem extension (φ=1)208C2.12(C2xC4xD13)416,113
C2.13(C2×C4×D13) = D528C4central stem extension (φ=1)208C2.13(C2xC4xD13)416,114
C2.14(C2×C4×D13) = C2×C8⋊D13central stem extension (φ=1)208C2.14(C2xC4xD13)416,121
C2.15(C2×C4×D13) = D52.3C4central stem extension (φ=1)2082C2.15(C2xC4xD13)416,122
C2.16(C2×C4×D13) = M4(2)×D13central stem extension (φ=1)1044C2.16(C2xC4xD13)416,127
C2.17(C2×C4×D13) = D52.2C4central stem extension (φ=1)2084C2.17(C2xC4xD13)416,128
C2.18(C2×C4×D13) = C2×C26.D4central stem extension (φ=1)416C2.18(C2xC4xD13)416,144
C2.19(C2×C4×D13) = C2×D26⋊C4central stem extension (φ=1)208C2.19(C2xC4xD13)416,148
C2.20(C2×C4×D13) = C4×C13⋊D4central stem extension (φ=1)208C2.20(C2xC4xD13)416,149

׿
×
𝔽