Copied to
clipboard

G = C2×D26⋊C4order 416 = 25·13

Direct product of C2 and D26⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D26⋊C4, C23.31D26, C22.16D52, (C2×C4)⋊8D26, D267(C2×C4), C2.3(C2×D52), (C22×C52)⋊1C2, (C2×C26).36D4, C26.40(C2×D4), (C22×C4)⋊1D13, C262(C22⋊C4), (C2×C52)⋊10C22, (C22×D13)⋊4C4, (C2×C26).45C23, C26.31(C22×C4), (C23×D13).2C2, C22.17(C4×D13), (C22×Dic13)⋊3C2, (C2×Dic13)⋊6C22, C22.20(C13⋊D4), (C22×C26).37C22, C22.23(C22×D13), (C22×D13).26C22, C133(C2×C22⋊C4), C2.19(C2×C4×D13), C2.2(C2×C13⋊D4), (C2×C26).38(C2×C4), SmallGroup(416,148)

Series: Derived Chief Lower central Upper central

C1C26 — C2×D26⋊C4
C1C13C26C2×C26C22×D13C23×D13 — C2×D26⋊C4
C13C26 — C2×D26⋊C4
C1C23C22×C4

Generators and relations for C2×D26⋊C4
 G = < a,b,c,d | a2=b26=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b13c >

Subgroups: 992 in 132 conjugacy classes, 57 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C13, C22⋊C4, C22×C4, C22×C4, C24, D13, C26, C26, C2×C22⋊C4, Dic13, C52, D26, D26, C2×C26, C2×C26, C2×Dic13, C2×Dic13, C2×C52, C2×C52, C22×D13, C22×D13, C22×C26, D26⋊C4, C22×Dic13, C22×C52, C23×D13, C2×D26⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, D13, C2×C22⋊C4, D26, C4×D13, D52, C13⋊D4, C22×D13, D26⋊C4, C2×C4×D13, C2×D52, C2×C13⋊D4, C2×D26⋊C4

Smallest permutation representation of C2×D26⋊C4
On 208 points
Generators in S208
(1 133)(2 134)(3 135)(4 136)(5 137)(6 138)(7 139)(8 140)(9 141)(10 142)(11 143)(12 144)(13 145)(14 146)(15 147)(16 148)(17 149)(18 150)(19 151)(20 152)(21 153)(22 154)(23 155)(24 156)(25 131)(26 132)(27 119)(28 120)(29 121)(30 122)(31 123)(32 124)(33 125)(34 126)(35 127)(36 128)(37 129)(38 130)(39 105)(40 106)(41 107)(42 108)(43 109)(44 110)(45 111)(46 112)(47 113)(48 114)(49 115)(50 116)(51 117)(52 118)(53 201)(54 202)(55 203)(56 204)(57 205)(58 206)(59 207)(60 208)(61 183)(62 184)(63 185)(64 186)(65 187)(66 188)(67 189)(68 190)(69 191)(70 192)(71 193)(72 194)(73 195)(74 196)(75 197)(76 198)(77 199)(78 200)(79 169)(80 170)(81 171)(82 172)(83 173)(84 174)(85 175)(86 176)(87 177)(88 178)(89 179)(90 180)(91 181)(92 182)(93 157)(94 158)(95 159)(96 160)(97 161)(98 162)(99 163)(100 164)(101 165)(102 166)(103 167)(104 168)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 130)(2 129)(3 128)(4 127)(5 126)(6 125)(7 124)(8 123)(9 122)(10 121)(11 120)(12 119)(13 118)(14 117)(15 116)(16 115)(17 114)(18 113)(19 112)(20 111)(21 110)(22 109)(23 108)(24 107)(25 106)(26 105)(27 144)(28 143)(29 142)(30 141)(31 140)(32 139)(33 138)(34 137)(35 136)(36 135)(37 134)(38 133)(39 132)(40 131)(41 156)(42 155)(43 154)(44 153)(45 152)(46 151)(47 150)(48 149)(49 148)(50 147)(51 146)(52 145)(53 181)(54 180)(55 179)(56 178)(57 177)(58 176)(59 175)(60 174)(61 173)(62 172)(63 171)(64 170)(65 169)(66 168)(67 167)(68 166)(69 165)(70 164)(71 163)(72 162)(73 161)(74 160)(75 159)(76 158)(77 157)(78 182)(79 187)(80 186)(81 185)(82 184)(83 183)(84 208)(85 207)(86 206)(87 205)(88 204)(89 203)(90 202)(91 201)(92 200)(93 199)(94 198)(95 197)(96 196)(97 195)(98 194)(99 193)(100 192)(101 191)(102 190)(103 189)(104 188)
(1 99 52 72)(2 100 27 73)(3 101 28 74)(4 102 29 75)(5 103 30 76)(6 104 31 77)(7 79 32 78)(8 80 33 53)(9 81 34 54)(10 82 35 55)(11 83 36 56)(12 84 37 57)(13 85 38 58)(14 86 39 59)(15 87 40 60)(16 88 41 61)(17 89 42 62)(18 90 43 63)(19 91 44 64)(20 92 45 65)(21 93 46 66)(22 94 47 67)(23 95 48 68)(24 96 49 69)(25 97 50 70)(26 98 51 71)(105 207 146 176)(106 208 147 177)(107 183 148 178)(108 184 149 179)(109 185 150 180)(110 186 151 181)(111 187 152 182)(112 188 153 157)(113 189 154 158)(114 190 155 159)(115 191 156 160)(116 192 131 161)(117 193 132 162)(118 194 133 163)(119 195 134 164)(120 196 135 165)(121 197 136 166)(122 198 137 167)(123 199 138 168)(124 200 139 169)(125 201 140 170)(126 202 141 171)(127 203 142 172)(128 204 143 173)(129 205 144 174)(130 206 145 175)

G:=sub<Sym(208)| (1,133)(2,134)(3,135)(4,136)(5,137)(6,138)(7,139)(8,140)(9,141)(10,142)(11,143)(12,144)(13,145)(14,146)(15,147)(16,148)(17,149)(18,150)(19,151)(20,152)(21,153)(22,154)(23,155)(24,156)(25,131)(26,132)(27,119)(28,120)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,105)(40,106)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,113)(48,114)(49,115)(50,116)(51,117)(52,118)(53,201)(54,202)(55,203)(56,204)(57,205)(58,206)(59,207)(60,208)(61,183)(62,184)(63,185)(64,186)(65,187)(66,188)(67,189)(68,190)(69,191)(70,192)(71,193)(72,194)(73,195)(74,196)(75,197)(76,198)(77,199)(78,200)(79,169)(80,170)(81,171)(82,172)(83,173)(84,174)(85,175)(86,176)(87,177)(88,178)(89,179)(90,180)(91,181)(92,182)(93,157)(94,158)(95,159)(96,160)(97,161)(98,162)(99,163)(100,164)(101,165)(102,166)(103,167)(104,168), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,130)(2,129)(3,128)(4,127)(5,126)(6,125)(7,124)(8,123)(9,122)(10,121)(11,120)(12,119)(13,118)(14,117)(15,116)(16,115)(17,114)(18,113)(19,112)(20,111)(21,110)(22,109)(23,108)(24,107)(25,106)(26,105)(27,144)(28,143)(29,142)(30,141)(31,140)(32,139)(33,138)(34,137)(35,136)(36,135)(37,134)(38,133)(39,132)(40,131)(41,156)(42,155)(43,154)(44,153)(45,152)(46,151)(47,150)(48,149)(49,148)(50,147)(51,146)(52,145)(53,181)(54,180)(55,179)(56,178)(57,177)(58,176)(59,175)(60,174)(61,173)(62,172)(63,171)(64,170)(65,169)(66,168)(67,167)(68,166)(69,165)(70,164)(71,163)(72,162)(73,161)(74,160)(75,159)(76,158)(77,157)(78,182)(79,187)(80,186)(81,185)(82,184)(83,183)(84,208)(85,207)(86,206)(87,205)(88,204)(89,203)(90,202)(91,201)(92,200)(93,199)(94,198)(95,197)(96,196)(97,195)(98,194)(99,193)(100,192)(101,191)(102,190)(103,189)(104,188), (1,99,52,72)(2,100,27,73)(3,101,28,74)(4,102,29,75)(5,103,30,76)(6,104,31,77)(7,79,32,78)(8,80,33,53)(9,81,34,54)(10,82,35,55)(11,83,36,56)(12,84,37,57)(13,85,38,58)(14,86,39,59)(15,87,40,60)(16,88,41,61)(17,89,42,62)(18,90,43,63)(19,91,44,64)(20,92,45,65)(21,93,46,66)(22,94,47,67)(23,95,48,68)(24,96,49,69)(25,97,50,70)(26,98,51,71)(105,207,146,176)(106,208,147,177)(107,183,148,178)(108,184,149,179)(109,185,150,180)(110,186,151,181)(111,187,152,182)(112,188,153,157)(113,189,154,158)(114,190,155,159)(115,191,156,160)(116,192,131,161)(117,193,132,162)(118,194,133,163)(119,195,134,164)(120,196,135,165)(121,197,136,166)(122,198,137,167)(123,199,138,168)(124,200,139,169)(125,201,140,170)(126,202,141,171)(127,203,142,172)(128,204,143,173)(129,205,144,174)(130,206,145,175)>;

G:=Group( (1,133)(2,134)(3,135)(4,136)(5,137)(6,138)(7,139)(8,140)(9,141)(10,142)(11,143)(12,144)(13,145)(14,146)(15,147)(16,148)(17,149)(18,150)(19,151)(20,152)(21,153)(22,154)(23,155)(24,156)(25,131)(26,132)(27,119)(28,120)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,105)(40,106)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,113)(48,114)(49,115)(50,116)(51,117)(52,118)(53,201)(54,202)(55,203)(56,204)(57,205)(58,206)(59,207)(60,208)(61,183)(62,184)(63,185)(64,186)(65,187)(66,188)(67,189)(68,190)(69,191)(70,192)(71,193)(72,194)(73,195)(74,196)(75,197)(76,198)(77,199)(78,200)(79,169)(80,170)(81,171)(82,172)(83,173)(84,174)(85,175)(86,176)(87,177)(88,178)(89,179)(90,180)(91,181)(92,182)(93,157)(94,158)(95,159)(96,160)(97,161)(98,162)(99,163)(100,164)(101,165)(102,166)(103,167)(104,168), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,130)(2,129)(3,128)(4,127)(5,126)(6,125)(7,124)(8,123)(9,122)(10,121)(11,120)(12,119)(13,118)(14,117)(15,116)(16,115)(17,114)(18,113)(19,112)(20,111)(21,110)(22,109)(23,108)(24,107)(25,106)(26,105)(27,144)(28,143)(29,142)(30,141)(31,140)(32,139)(33,138)(34,137)(35,136)(36,135)(37,134)(38,133)(39,132)(40,131)(41,156)(42,155)(43,154)(44,153)(45,152)(46,151)(47,150)(48,149)(49,148)(50,147)(51,146)(52,145)(53,181)(54,180)(55,179)(56,178)(57,177)(58,176)(59,175)(60,174)(61,173)(62,172)(63,171)(64,170)(65,169)(66,168)(67,167)(68,166)(69,165)(70,164)(71,163)(72,162)(73,161)(74,160)(75,159)(76,158)(77,157)(78,182)(79,187)(80,186)(81,185)(82,184)(83,183)(84,208)(85,207)(86,206)(87,205)(88,204)(89,203)(90,202)(91,201)(92,200)(93,199)(94,198)(95,197)(96,196)(97,195)(98,194)(99,193)(100,192)(101,191)(102,190)(103,189)(104,188), (1,99,52,72)(2,100,27,73)(3,101,28,74)(4,102,29,75)(5,103,30,76)(6,104,31,77)(7,79,32,78)(8,80,33,53)(9,81,34,54)(10,82,35,55)(11,83,36,56)(12,84,37,57)(13,85,38,58)(14,86,39,59)(15,87,40,60)(16,88,41,61)(17,89,42,62)(18,90,43,63)(19,91,44,64)(20,92,45,65)(21,93,46,66)(22,94,47,67)(23,95,48,68)(24,96,49,69)(25,97,50,70)(26,98,51,71)(105,207,146,176)(106,208,147,177)(107,183,148,178)(108,184,149,179)(109,185,150,180)(110,186,151,181)(111,187,152,182)(112,188,153,157)(113,189,154,158)(114,190,155,159)(115,191,156,160)(116,192,131,161)(117,193,132,162)(118,194,133,163)(119,195,134,164)(120,196,135,165)(121,197,136,166)(122,198,137,167)(123,199,138,168)(124,200,139,169)(125,201,140,170)(126,202,141,171)(127,203,142,172)(128,204,143,173)(129,205,144,174)(130,206,145,175) );

G=PermutationGroup([[(1,133),(2,134),(3,135),(4,136),(5,137),(6,138),(7,139),(8,140),(9,141),(10,142),(11,143),(12,144),(13,145),(14,146),(15,147),(16,148),(17,149),(18,150),(19,151),(20,152),(21,153),(22,154),(23,155),(24,156),(25,131),(26,132),(27,119),(28,120),(29,121),(30,122),(31,123),(32,124),(33,125),(34,126),(35,127),(36,128),(37,129),(38,130),(39,105),(40,106),(41,107),(42,108),(43,109),(44,110),(45,111),(46,112),(47,113),(48,114),(49,115),(50,116),(51,117),(52,118),(53,201),(54,202),(55,203),(56,204),(57,205),(58,206),(59,207),(60,208),(61,183),(62,184),(63,185),(64,186),(65,187),(66,188),(67,189),(68,190),(69,191),(70,192),(71,193),(72,194),(73,195),(74,196),(75,197),(76,198),(77,199),(78,200),(79,169),(80,170),(81,171),(82,172),(83,173),(84,174),(85,175),(86,176),(87,177),(88,178),(89,179),(90,180),(91,181),(92,182),(93,157),(94,158),(95,159),(96,160),(97,161),(98,162),(99,163),(100,164),(101,165),(102,166),(103,167),(104,168)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,130),(2,129),(3,128),(4,127),(5,126),(6,125),(7,124),(8,123),(9,122),(10,121),(11,120),(12,119),(13,118),(14,117),(15,116),(16,115),(17,114),(18,113),(19,112),(20,111),(21,110),(22,109),(23,108),(24,107),(25,106),(26,105),(27,144),(28,143),(29,142),(30,141),(31,140),(32,139),(33,138),(34,137),(35,136),(36,135),(37,134),(38,133),(39,132),(40,131),(41,156),(42,155),(43,154),(44,153),(45,152),(46,151),(47,150),(48,149),(49,148),(50,147),(51,146),(52,145),(53,181),(54,180),(55,179),(56,178),(57,177),(58,176),(59,175),(60,174),(61,173),(62,172),(63,171),(64,170),(65,169),(66,168),(67,167),(68,166),(69,165),(70,164),(71,163),(72,162),(73,161),(74,160),(75,159),(76,158),(77,157),(78,182),(79,187),(80,186),(81,185),(82,184),(83,183),(84,208),(85,207),(86,206),(87,205),(88,204),(89,203),(90,202),(91,201),(92,200),(93,199),(94,198),(95,197),(96,196),(97,195),(98,194),(99,193),(100,192),(101,191),(102,190),(103,189),(104,188)], [(1,99,52,72),(2,100,27,73),(3,101,28,74),(4,102,29,75),(5,103,30,76),(6,104,31,77),(7,79,32,78),(8,80,33,53),(9,81,34,54),(10,82,35,55),(11,83,36,56),(12,84,37,57),(13,85,38,58),(14,86,39,59),(15,87,40,60),(16,88,41,61),(17,89,42,62),(18,90,43,63),(19,91,44,64),(20,92,45,65),(21,93,46,66),(22,94,47,67),(23,95,48,68),(24,96,49,69),(25,97,50,70),(26,98,51,71),(105,207,146,176),(106,208,147,177),(107,183,148,178),(108,184,149,179),(109,185,150,180),(110,186,151,181),(111,187,152,182),(112,188,153,157),(113,189,154,158),(114,190,155,159),(115,191,156,160),(116,192,131,161),(117,193,132,162),(118,194,133,163),(119,195,134,164),(120,196,135,165),(121,197,136,166),(122,198,137,167),(123,199,138,168),(124,200,139,169),(125,201,140,170),(126,202,141,171),(127,203,142,172),(128,204,143,173),(129,205,144,174),(130,206,145,175)]])

116 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H13A···13F26A···26AP52A···52AV
order12···222224444444413···1326···2652···52
size11···1262626262222262626262···22···22···2

116 irreducible representations

dim1111112222222
type++++++++++
imageC1C2C2C2C2C4D4D13D26D26C4×D13D52C13⋊D4
kernelC2×D26⋊C4D26⋊C4C22×Dic13C22×C52C23×D13C22×D13C2×C26C22×C4C2×C4C23C22C22C22
# reps14111846126242424

Matrix representation of C2×D26⋊C4 in GL5(𝔽53)

520000
01000
00100
000520
000052
,
10000
0393300
0342200
0001151
0004516
,
520000
0164400
0463700
00010
0002452
,
300000
030000
003000
0002520
0002728

G:=sub<GL(5,GF(53))| [52,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,52,0,0,0,0,0,52],[1,0,0,0,0,0,39,34,0,0,0,33,22,0,0,0,0,0,11,45,0,0,0,51,16],[52,0,0,0,0,0,16,46,0,0,0,44,37,0,0,0,0,0,1,24,0,0,0,0,52],[30,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,25,27,0,0,0,20,28] >;

C2×D26⋊C4 in GAP, Magma, Sage, TeX

C_2\times D_{26}\rtimes C_4
% in TeX

G:=Group("C2xD26:C4");
// GroupNames label

G:=SmallGroup(416,148);
// by ID

G=gap.SmallGroup(416,148);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,362,50,13829]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^26=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^13*c>;
// generators/relations

׿
×
𝔽