Extensions 1→N→G→Q→1 with N=C2 and Q=D525C2

Direct product G=N×Q with N=C2 and Q=D525C2
dρLabelID
C2×D525C2208C2xD52:5C2416,215


Non-split extensions G=N.Q with N=C2 and Q=D525C2
extensionφ:Q→Aut NdρLabelID
C2.1(D525C2) = C4×Dic26central extension (φ=1)416C2.1(D52:5C2)416,89
C2.2(D525C2) = C42⋊D13central extension (φ=1)208C2.2(D52:5C2)416,93
C2.3(D525C2) = C4×D52central extension (φ=1)208C2.3(D52:5C2)416,94
C2.4(D525C2) = C23.21D26central extension (φ=1)208C2.4(D52:5C2)416,147
C2.5(D525C2) = C4×C13⋊D4central extension (φ=1)208C2.5(D52:5C2)416,149
C2.6(D525C2) = C52.6Q8central stem extension (φ=1)416C2.6(D52:5C2)416,91
C2.7(D525C2) = C4.D52central stem extension (φ=1)208C2.7(D52:5C2)416,96
C2.8(D525C2) = C422D13central stem extension (φ=1)208C2.8(D52:5C2)416,97
C2.9(D525C2) = C23.D26central stem extension (φ=1)208C2.9(D52:5C2)416,100
C2.10(D525C2) = D26.12D4central stem extension (φ=1)208C2.10(D52:5C2)416,104
C2.11(D525C2) = D26⋊D4central stem extension (φ=1)208C2.11(D52:5C2)416,105
C2.12(D525C2) = C23.6D26central stem extension (φ=1)208C2.12(D52:5C2)416,106
C2.13(D525C2) = Dic13.Q8central stem extension (φ=1)416C2.13(D52:5C2)416,110
C2.14(D525C2) = D26.13D4central stem extension (φ=1)208C2.14(D52:5C2)416,115
C2.15(D525C2) = D26⋊Q8central stem extension (φ=1)208C2.15(D52:5C2)416,117
C2.16(D525C2) = C4⋊C4⋊D13central stem extension (φ=1)208C2.16(D52:5C2)416,119
C2.17(D525C2) = C52.48D4central stem extension (φ=1)208C2.17(D52:5C2)416,145
C2.18(D525C2) = C23.23D26central stem extension (φ=1)208C2.18(D52:5C2)416,150
C2.19(D525C2) = C527D4central stem extension (φ=1)208C2.19(D52:5C2)416,151

׿
×
𝔽