Extensions 1→N→G→Q→1 with N=D4×D13 and Q=C2

Direct product G=N×Q with N=D4×D13 and Q=C2

Semidirect products G=N:Q with N=D4×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×D13)⋊1C2 = D8×D13φ: C2/C1C2 ⊆ Out D4×D131044+(D4xD13):1C2416,131
(D4×D13)⋊2C2 = D8⋊D13φ: C2/C1C2 ⊆ Out D4×D131044(D4xD13):2C2416,132
(D4×D13)⋊3C2 = Q8⋊D26φ: C2/C1C2 ⊆ Out D4×D131044+(D4xD13):3C2416,135
(D4×D13)⋊4C2 = D46D26φ: C2/C1C2 ⊆ Out D4×D131044(D4xD13):4C2416,218
(D4×D13)⋊5C2 = D48D26φ: C2/C1C2 ⊆ Out D4×D131044+(D4xD13):5C2416,223
(D4×D13)⋊6C2 = C4○D4×D13φ: trivial image1044(D4xD13):6C2416,222

Non-split extensions G=N.Q with N=D4×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×D13).1C2 = SD16×D13φ: C2/C1C2 ⊆ Out D4×D131044(D4xD13).1C2416,134
(D4×D13).2C2 = D521C4φ: C2/C1C2 ⊆ Out D4×D131048+(D4xD13).2C2416,82
(D4×D13).3C2 = D4×C13⋊C4φ: C2/C1C2 ⊆ Out D4×D13528+(D4xD13).3C2416,206