Copied to
clipboard

G = SD16×D13order 416 = 25·13

Direct product of SD16 and D13

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: SD16×D13, C85D26, Q81D26, D4.2D26, C1045C22, D26.24D4, C52.4C23, Dic13.8D4, D52.2C22, Dic262C22, (C8×D13)⋊4C2, Q8⋊D131C2, (Q8×D13)⋊1C2, C132(C2×SD16), C104⋊C25C2, D4.D133C2, (D4×D13).1C2, C2.18(D4×D13), C26.30(C2×D4), C132C86C22, (C13×SD16)⋊3C2, (Q8×C13)⋊1C22, C4.4(C22×D13), (D4×C13).2C22, (C4×D13).17C22, SmallGroup(416,134)

Series: Derived Chief Lower central Upper central

C1C52 — SD16×D13
C1C13C26C52C4×D13D4×D13 — SD16×D13
C13C26C52 — SD16×D13
C1C2C4SD16

Generators and relations for SD16×D13
 G = < a,b,c,d | a8=b2=c13=d2=1, bab=a3, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 576 in 68 conjugacy classes, 29 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, D4, D4, Q8, Q8, C23, C13, C2×C8, SD16, SD16, C2×D4, C2×Q8, D13, D13, C26, C26, C2×SD16, Dic13, Dic13, C52, C52, D26, D26, C2×C26, C132C8, C104, Dic26, Dic26, C4×D13, C4×D13, D52, C13⋊D4, D4×C13, Q8×C13, C22×D13, C8×D13, C104⋊C2, D4.D13, Q8⋊D13, C13×SD16, D4×D13, Q8×D13, SD16×D13
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, D13, C2×SD16, D26, C22×D13, D4×D13, SD16×D13

Smallest permutation representation of SD16×D13
On 104 points
Generators in S104
(1 103 38 77 25 90 51 64)(2 104 39 78 26 91 52 65)(3 92 27 66 14 79 40 53)(4 93 28 67 15 80 41 54)(5 94 29 68 16 81 42 55)(6 95 30 69 17 82 43 56)(7 96 31 70 18 83 44 57)(8 97 32 71 19 84 45 58)(9 98 33 72 20 85 46 59)(10 99 34 73 21 86 47 60)(11 100 35 74 22 87 48 61)(12 101 36 75 23 88 49 62)(13 102 37 76 24 89 50 63)
(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 22)(15 21)(16 20)(17 19)(23 26)(24 25)(27 35)(28 34)(29 33)(30 32)(36 39)(37 38)(40 48)(41 47)(42 46)(43 45)(49 52)(50 51)(53 61)(54 60)(55 59)(56 58)(62 65)(63 64)(66 74)(67 73)(68 72)(69 71)(75 78)(76 77)(79 87)(80 86)(81 85)(82 84)(88 91)(89 90)(92 100)(93 99)(94 98)(95 97)(101 104)(102 103)

G:=sub<Sym(104)| (1,103,38,77,25,90,51,64)(2,104,39,78,26,91,52,65)(3,92,27,66,14,79,40,53)(4,93,28,67,15,80,41,54)(5,94,29,68,16,81,42,55)(6,95,30,69,17,82,43,56)(7,96,31,70,18,83,44,57)(8,97,32,71,19,84,45,58)(9,98,33,72,20,85,46,59)(10,99,34,73,21,86,47,60)(11,100,35,74,22,87,48,61)(12,101,36,75,23,88,49,62)(13,102,37,76,24,89,50,63), (27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,22)(15,21)(16,20)(17,19)(23,26)(24,25)(27,35)(28,34)(29,33)(30,32)(36,39)(37,38)(40,48)(41,47)(42,46)(43,45)(49,52)(50,51)(53,61)(54,60)(55,59)(56,58)(62,65)(63,64)(66,74)(67,73)(68,72)(69,71)(75,78)(76,77)(79,87)(80,86)(81,85)(82,84)(88,91)(89,90)(92,100)(93,99)(94,98)(95,97)(101,104)(102,103)>;

G:=Group( (1,103,38,77,25,90,51,64)(2,104,39,78,26,91,52,65)(3,92,27,66,14,79,40,53)(4,93,28,67,15,80,41,54)(5,94,29,68,16,81,42,55)(6,95,30,69,17,82,43,56)(7,96,31,70,18,83,44,57)(8,97,32,71,19,84,45,58)(9,98,33,72,20,85,46,59)(10,99,34,73,21,86,47,60)(11,100,35,74,22,87,48,61)(12,101,36,75,23,88,49,62)(13,102,37,76,24,89,50,63), (27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,22)(15,21)(16,20)(17,19)(23,26)(24,25)(27,35)(28,34)(29,33)(30,32)(36,39)(37,38)(40,48)(41,47)(42,46)(43,45)(49,52)(50,51)(53,61)(54,60)(55,59)(56,58)(62,65)(63,64)(66,74)(67,73)(68,72)(69,71)(75,78)(76,77)(79,87)(80,86)(81,85)(82,84)(88,91)(89,90)(92,100)(93,99)(94,98)(95,97)(101,104)(102,103) );

G=PermutationGroup([[(1,103,38,77,25,90,51,64),(2,104,39,78,26,91,52,65),(3,92,27,66,14,79,40,53),(4,93,28,67,15,80,41,54),(5,94,29,68,16,81,42,55),(6,95,30,69,17,82,43,56),(7,96,31,70,18,83,44,57),(8,97,32,71,19,84,45,58),(9,98,33,72,20,85,46,59),(10,99,34,73,21,86,47,60),(11,100,35,74,22,87,48,61),(12,101,36,75,23,88,49,62),(13,102,37,76,24,89,50,63)], [(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,22),(15,21),(16,20),(17,19),(23,26),(24,25),(27,35),(28,34),(29,33),(30,32),(36,39),(37,38),(40,48),(41,47),(42,46),(43,45),(49,52),(50,51),(53,61),(54,60),(55,59),(56,58),(62,65),(63,64),(66,74),(67,73),(68,72),(69,71),(75,78),(76,77),(79,87),(80,86),(81,85),(82,84),(88,91),(89,90),(92,100),(93,99),(94,98),(95,97),(101,104),(102,103)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D8A8B8C8D13A···13F26A···26F26G···26L52A···52F52G···52L104A···104L
order1222224444888813···1326···2626···2652···5252···52104···104
size1141313522426522226262···22···28···84···48···84···4

56 irreducible representations

dim11111111222222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4SD16D13D26D26D26D4×D13SD16×D13
kernelSD16×D13C8×D13C104⋊C2D4.D13Q8⋊D13C13×SD16D4×D13Q8×D13Dic13D26D13SD16C8D4Q8C2C1
# reps111111111146666612

Matrix representation of SD16×D13 in GL4(𝔽313) generated by

1000
0100
00183130
002480
,
1000
0100
0010
001312
,
115100
30528300
0010
0001
,
28331200
2733000
0010
0001
G:=sub<GL(4,GF(313))| [1,0,0,0,0,1,0,0,0,0,183,248,0,0,130,0],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,312],[115,305,0,0,1,283,0,0,0,0,1,0,0,0,0,1],[283,273,0,0,312,30,0,0,0,0,1,0,0,0,0,1] >;

SD16×D13 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times D_{13}
% in TeX

G:=Group("SD16xD13");
// GroupNames label

G:=SmallGroup(416,134);
// by ID

G=gap.SmallGroup(416,134);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,116,86,297,159,69,13829]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^13=d^2=1,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽