Extensions 1→N→G→Q→1 with N=Q8×C26 and Q=C2

Direct product G=N×Q with N=Q8×C26 and Q=C2
dρLabelID
Q8×C2×C26416Q8xC2xC26416,229

Semidirect products G=N:Q with N=Q8×C26 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C26)⋊1C2 = C2×Q8⋊D13φ: C2/C1C2 ⊆ Out Q8×C26208(Q8xC26):1C2416,162
(Q8×C26)⋊2C2 = Q8.D26φ: C2/C1C2 ⊆ Out Q8×C262084(Q8xC26):2C2416,163
(Q8×C26)⋊3C2 = D263Q8φ: C2/C1C2 ⊆ Out Q8×C26208(Q8xC26):3C2416,167
(Q8×C26)⋊4C2 = C52.23D4φ: C2/C1C2 ⊆ Out Q8×C26208(Q8xC26):4C2416,168
(Q8×C26)⋊5C2 = C2×Q8×D13φ: C2/C1C2 ⊆ Out Q8×C26208(Q8xC26):5C2416,219
(Q8×C26)⋊6C2 = C2×D52⋊C2φ: C2/C1C2 ⊆ Out Q8×C26208(Q8xC26):6C2416,220
(Q8×C26)⋊7C2 = Q8.10D26φ: C2/C1C2 ⊆ Out Q8×C262084(Q8xC26):7C2416,221
(Q8×C26)⋊8C2 = C13×C22⋊Q8φ: C2/C1C2 ⊆ Out Q8×C26208(Q8xC26):8C2416,183
(Q8×C26)⋊9C2 = C13×C4.4D4φ: C2/C1C2 ⊆ Out Q8×C26208(Q8xC26):9C2416,185
(Q8×C26)⋊10C2 = SD16×C26φ: C2/C1C2 ⊆ Out Q8×C26208(Q8xC26):10C2416,194
(Q8×C26)⋊11C2 = C13×C8.C22φ: C2/C1C2 ⊆ Out Q8×C262084(Q8xC26):11C2416,198
(Q8×C26)⋊12C2 = C13×2- 1+4φ: C2/C1C2 ⊆ Out Q8×C262084(Q8xC26):12C2416,232
(Q8×C26)⋊13C2 = C4○D4×C26φ: trivial image208(Q8xC26):13C2416,230

Non-split extensions G=N.Q with N=Q8×C26 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C26).1C2 = Q8⋊Dic13φ: C2/C1C2 ⊆ Out Q8×C26416(Q8xC26).1C2416,42
(Q8×C26).2C2 = C52.10D4φ: C2/C1C2 ⊆ Out Q8×C262084(Q8xC26).2C2416,43
(Q8×C26).3C2 = C2×C13⋊Q16φ: C2/C1C2 ⊆ Out Q8×C26416(Q8xC26).3C2416,164
(Q8×C26).4C2 = Dic13⋊Q8φ: C2/C1C2 ⊆ Out Q8×C26416(Q8xC26).4C2416,165
(Q8×C26).5C2 = Q8×Dic13φ: C2/C1C2 ⊆ Out Q8×C26416(Q8xC26).5C2416,166
(Q8×C26).6C2 = C13×C4.10D4φ: C2/C1C2 ⊆ Out Q8×C262084(Q8xC26).6C2416,51
(Q8×C26).7C2 = C13×Q8⋊C4φ: C2/C1C2 ⊆ Out Q8×C26416(Q8xC26).7C2416,53
(Q8×C26).8C2 = C13×C4⋊Q8φ: C2/C1C2 ⊆ Out Q8×C26416(Q8xC26).8C2416,189
(Q8×C26).9C2 = Q16×C26φ: C2/C1C2 ⊆ Out Q8×C26416(Q8xC26).9C2416,195
(Q8×C26).10C2 = Q8×C52φ: trivial image416(Q8xC26).10C2416,180

׿
×
𝔽