direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D52⋊C2, Q8⋊5D26, D52⋊9C22, C26.9C24, C52.23C23, D26.4C23, Dic13.16C23, (C2×Q8)⋊6D13, (Q8×C26)⋊6C2, (C2×D52)⋊12C2, C26⋊3(C4○D4), (C2×C4).62D26, (C4×D13)⋊5C22, (Q8×C13)⋊6C22, (C2×C52).47C22, (C2×C26).67C23, C4.23(C22×D13), C2.10(C23×D13), C22.32(C22×D13), (C2×Dic13).65C22, (C22×D13).33C22, (C2×C4×D13)⋊5C2, C13⋊3(C2×C4○D4), SmallGroup(416,220)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D52⋊C2
G = < a,b,c,d | a2=b52=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd=b25, dcd=b50c >
Subgroups: 1088 in 164 conjugacy classes, 89 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C13, C22×C4, C2×D4, C2×Q8, C4○D4, D13, C26, C26, C2×C4○D4, Dic13, C52, D26, D26, C2×C26, C4×D13, D52, C2×Dic13, C2×C52, Q8×C13, C22×D13, C2×C4×D13, C2×D52, D52⋊C2, Q8×C26, C2×D52⋊C2
Quotients: C1, C2, C22, C23, C4○D4, C24, D13, C2×C4○D4, D26, C22×D13, D52⋊C2, C23×D13, C2×D52⋊C2
(1 137)(2 138)(3 139)(4 140)(5 141)(6 142)(7 143)(8 144)(9 145)(10 146)(11 147)(12 148)(13 149)(14 150)(15 151)(16 152)(17 153)(18 154)(19 155)(20 156)(21 105)(22 106)(23 107)(24 108)(25 109)(26 110)(27 111)(28 112)(29 113)(30 114)(31 115)(32 116)(33 117)(34 118)(35 119)(36 120)(37 121)(38 122)(39 123)(40 124)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 136)(53 167)(54 168)(55 169)(56 170)(57 171)(58 172)(59 173)(60 174)(61 175)(62 176)(63 177)(64 178)(65 179)(66 180)(67 181)(68 182)(69 183)(70 184)(71 185)(72 186)(73 187)(74 188)(75 189)(76 190)(77 191)(78 192)(79 193)(80 194)(81 195)(82 196)(83 197)(84 198)(85 199)(86 200)(87 201)(88 202)(89 203)(90 204)(91 205)(92 206)(93 207)(94 208)(95 157)(96 158)(97 159)(98 160)(99 161)(100 162)(101 163)(102 164)(103 165)(104 166)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 53)(2 104)(3 103)(4 102)(5 101)(6 100)(7 99)(8 98)(9 97)(10 96)(11 95)(12 94)(13 93)(14 92)(15 91)(16 90)(17 89)(18 88)(19 87)(20 86)(21 85)(22 84)(23 83)(24 82)(25 81)(26 80)(27 79)(28 78)(29 77)(30 76)(31 75)(32 74)(33 73)(34 72)(35 71)(36 70)(37 69)(38 68)(39 67)(40 66)(41 65)(42 64)(43 63)(44 62)(45 61)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)(105 199)(106 198)(107 197)(108 196)(109 195)(110 194)(111 193)(112 192)(113 191)(114 190)(115 189)(116 188)(117 187)(118 186)(119 185)(120 184)(121 183)(122 182)(123 181)(124 180)(125 179)(126 178)(127 177)(128 176)(129 175)(130 174)(131 173)(132 172)(133 171)(134 170)(135 169)(136 168)(137 167)(138 166)(139 165)(140 164)(141 163)(142 162)(143 161)(144 160)(145 159)(146 158)(147 157)(148 208)(149 207)(150 206)(151 205)(152 204)(153 203)(154 202)(155 201)(156 200)
(2 26)(3 51)(4 24)(5 49)(6 22)(7 47)(8 20)(9 45)(10 18)(11 43)(12 16)(13 41)(15 39)(17 37)(19 35)(21 33)(23 31)(25 29)(28 52)(30 50)(32 48)(34 46)(36 44)(38 42)(53 55)(54 80)(56 78)(57 103)(58 76)(59 101)(60 74)(61 99)(62 72)(63 97)(64 70)(65 95)(66 68)(67 93)(69 91)(71 89)(73 87)(75 85)(77 83)(79 81)(82 104)(84 102)(86 100)(88 98)(90 96)(92 94)(105 117)(106 142)(107 115)(108 140)(109 113)(110 138)(112 136)(114 134)(116 132)(118 130)(119 155)(120 128)(121 153)(122 126)(123 151)(125 149)(127 147)(129 145)(131 143)(133 141)(135 139)(144 156)(146 154)(148 152)(157 179)(158 204)(159 177)(160 202)(161 175)(162 200)(163 173)(164 198)(165 171)(166 196)(167 169)(168 194)(170 192)(172 190)(174 188)(176 186)(178 184)(180 182)(181 207)(183 205)(185 203)(187 201)(189 199)(191 197)(193 195)(206 208)
G:=sub<Sym(208)| (1,137)(2,138)(3,139)(4,140)(5,141)(6,142)(7,143)(8,144)(9,145)(10,146)(11,147)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,167)(54,168)(55,169)(56,170)(57,171)(58,172)(59,173)(60,174)(61,175)(62,176)(63,177)(64,178)(65,179)(66,180)(67,181)(68,182)(69,183)(70,184)(71,185)(72,186)(73,187)(74,188)(75,189)(76,190)(77,191)(78,192)(79,193)(80,194)(81,195)(82,196)(83,197)(84,198)(85,199)(86,200)(87,201)(88,202)(89,203)(90,204)(91,205)(92,206)(93,207)(94,208)(95,157)(96,158)(97,159)(98,160)(99,161)(100,162)(101,163)(102,164)(103,165)(104,166), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,53)(2,104)(3,103)(4,102)(5,101)(6,100)(7,99)(8,98)(9,97)(10,96)(11,95)(12,94)(13,93)(14,92)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,84)(23,83)(24,82)(25,81)(26,80)(27,79)(28,78)(29,77)(30,76)(31,75)(32,74)(33,73)(34,72)(35,71)(36,70)(37,69)(38,68)(39,67)(40,66)(41,65)(42,64)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(105,199)(106,198)(107,197)(108,196)(109,195)(110,194)(111,193)(112,192)(113,191)(114,190)(115,189)(116,188)(117,187)(118,186)(119,185)(120,184)(121,183)(122,182)(123,181)(124,180)(125,179)(126,178)(127,177)(128,176)(129,175)(130,174)(131,173)(132,172)(133,171)(134,170)(135,169)(136,168)(137,167)(138,166)(139,165)(140,164)(141,163)(142,162)(143,161)(144,160)(145,159)(146,158)(147,157)(148,208)(149,207)(150,206)(151,205)(152,204)(153,203)(154,202)(155,201)(156,200), (2,26)(3,51)(4,24)(5,49)(6,22)(7,47)(8,20)(9,45)(10,18)(11,43)(12,16)(13,41)(15,39)(17,37)(19,35)(21,33)(23,31)(25,29)(28,52)(30,50)(32,48)(34,46)(36,44)(38,42)(53,55)(54,80)(56,78)(57,103)(58,76)(59,101)(60,74)(61,99)(62,72)(63,97)(64,70)(65,95)(66,68)(67,93)(69,91)(71,89)(73,87)(75,85)(77,83)(79,81)(82,104)(84,102)(86,100)(88,98)(90,96)(92,94)(105,117)(106,142)(107,115)(108,140)(109,113)(110,138)(112,136)(114,134)(116,132)(118,130)(119,155)(120,128)(121,153)(122,126)(123,151)(125,149)(127,147)(129,145)(131,143)(133,141)(135,139)(144,156)(146,154)(148,152)(157,179)(158,204)(159,177)(160,202)(161,175)(162,200)(163,173)(164,198)(165,171)(166,196)(167,169)(168,194)(170,192)(172,190)(174,188)(176,186)(178,184)(180,182)(181,207)(183,205)(185,203)(187,201)(189,199)(191,197)(193,195)(206,208)>;
G:=Group( (1,137)(2,138)(3,139)(4,140)(5,141)(6,142)(7,143)(8,144)(9,145)(10,146)(11,147)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,167)(54,168)(55,169)(56,170)(57,171)(58,172)(59,173)(60,174)(61,175)(62,176)(63,177)(64,178)(65,179)(66,180)(67,181)(68,182)(69,183)(70,184)(71,185)(72,186)(73,187)(74,188)(75,189)(76,190)(77,191)(78,192)(79,193)(80,194)(81,195)(82,196)(83,197)(84,198)(85,199)(86,200)(87,201)(88,202)(89,203)(90,204)(91,205)(92,206)(93,207)(94,208)(95,157)(96,158)(97,159)(98,160)(99,161)(100,162)(101,163)(102,164)(103,165)(104,166), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,53)(2,104)(3,103)(4,102)(5,101)(6,100)(7,99)(8,98)(9,97)(10,96)(11,95)(12,94)(13,93)(14,92)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,84)(23,83)(24,82)(25,81)(26,80)(27,79)(28,78)(29,77)(30,76)(31,75)(32,74)(33,73)(34,72)(35,71)(36,70)(37,69)(38,68)(39,67)(40,66)(41,65)(42,64)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(105,199)(106,198)(107,197)(108,196)(109,195)(110,194)(111,193)(112,192)(113,191)(114,190)(115,189)(116,188)(117,187)(118,186)(119,185)(120,184)(121,183)(122,182)(123,181)(124,180)(125,179)(126,178)(127,177)(128,176)(129,175)(130,174)(131,173)(132,172)(133,171)(134,170)(135,169)(136,168)(137,167)(138,166)(139,165)(140,164)(141,163)(142,162)(143,161)(144,160)(145,159)(146,158)(147,157)(148,208)(149,207)(150,206)(151,205)(152,204)(153,203)(154,202)(155,201)(156,200), (2,26)(3,51)(4,24)(5,49)(6,22)(7,47)(8,20)(9,45)(10,18)(11,43)(12,16)(13,41)(15,39)(17,37)(19,35)(21,33)(23,31)(25,29)(28,52)(30,50)(32,48)(34,46)(36,44)(38,42)(53,55)(54,80)(56,78)(57,103)(58,76)(59,101)(60,74)(61,99)(62,72)(63,97)(64,70)(65,95)(66,68)(67,93)(69,91)(71,89)(73,87)(75,85)(77,83)(79,81)(82,104)(84,102)(86,100)(88,98)(90,96)(92,94)(105,117)(106,142)(107,115)(108,140)(109,113)(110,138)(112,136)(114,134)(116,132)(118,130)(119,155)(120,128)(121,153)(122,126)(123,151)(125,149)(127,147)(129,145)(131,143)(133,141)(135,139)(144,156)(146,154)(148,152)(157,179)(158,204)(159,177)(160,202)(161,175)(162,200)(163,173)(164,198)(165,171)(166,196)(167,169)(168,194)(170,192)(172,190)(174,188)(176,186)(178,184)(180,182)(181,207)(183,205)(185,203)(187,201)(189,199)(191,197)(193,195)(206,208) );
G=PermutationGroup([[(1,137),(2,138),(3,139),(4,140),(5,141),(6,142),(7,143),(8,144),(9,145),(10,146),(11,147),(12,148),(13,149),(14,150),(15,151),(16,152),(17,153),(18,154),(19,155),(20,156),(21,105),(22,106),(23,107),(24,108),(25,109),(26,110),(27,111),(28,112),(29,113),(30,114),(31,115),(32,116),(33,117),(34,118),(35,119),(36,120),(37,121),(38,122),(39,123),(40,124),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,136),(53,167),(54,168),(55,169),(56,170),(57,171),(58,172),(59,173),(60,174),(61,175),(62,176),(63,177),(64,178),(65,179),(66,180),(67,181),(68,182),(69,183),(70,184),(71,185),(72,186),(73,187),(74,188),(75,189),(76,190),(77,191),(78,192),(79,193),(80,194),(81,195),(82,196),(83,197),(84,198),(85,199),(86,200),(87,201),(88,202),(89,203),(90,204),(91,205),(92,206),(93,207),(94,208),(95,157),(96,158),(97,159),(98,160),(99,161),(100,162),(101,163),(102,164),(103,165),(104,166)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,53),(2,104),(3,103),(4,102),(5,101),(6,100),(7,99),(8,98),(9,97),(10,96),(11,95),(12,94),(13,93),(14,92),(15,91),(16,90),(17,89),(18,88),(19,87),(20,86),(21,85),(22,84),(23,83),(24,82),(25,81),(26,80),(27,79),(28,78),(29,77),(30,76),(31,75),(32,74),(33,73),(34,72),(35,71),(36,70),(37,69),(38,68),(39,67),(40,66),(41,65),(42,64),(43,63),(44,62),(45,61),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54),(105,199),(106,198),(107,197),(108,196),(109,195),(110,194),(111,193),(112,192),(113,191),(114,190),(115,189),(116,188),(117,187),(118,186),(119,185),(120,184),(121,183),(122,182),(123,181),(124,180),(125,179),(126,178),(127,177),(128,176),(129,175),(130,174),(131,173),(132,172),(133,171),(134,170),(135,169),(136,168),(137,167),(138,166),(139,165),(140,164),(141,163),(142,162),(143,161),(144,160),(145,159),(146,158),(147,157),(148,208),(149,207),(150,206),(151,205),(152,204),(153,203),(154,202),(155,201),(156,200)], [(2,26),(3,51),(4,24),(5,49),(6,22),(7,47),(8,20),(9,45),(10,18),(11,43),(12,16),(13,41),(15,39),(17,37),(19,35),(21,33),(23,31),(25,29),(28,52),(30,50),(32,48),(34,46),(36,44),(38,42),(53,55),(54,80),(56,78),(57,103),(58,76),(59,101),(60,74),(61,99),(62,72),(63,97),(64,70),(65,95),(66,68),(67,93),(69,91),(71,89),(73,87),(75,85),(77,83),(79,81),(82,104),(84,102),(86,100),(88,98),(90,96),(92,94),(105,117),(106,142),(107,115),(108,140),(109,113),(110,138),(112,136),(114,134),(116,132),(118,130),(119,155),(120,128),(121,153),(122,126),(123,151),(125,149),(127,147),(129,145),(131,143),(133,141),(135,139),(144,156),(146,154),(148,152),(157,179),(158,204),(159,177),(160,202),(161,175),(162,200),(163,173),(164,198),(165,171),(166,196),(167,169),(168,194),(170,192),(172,190),(174,188),(176,186),(178,184),(180,182),(181,207),(183,205),(185,203),(187,201),(189,199),(191,197),(193,195),(206,208)]])
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 13A | ··· | 13F | 26A | ··· | 26R | 52A | ··· | 52AJ |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | 1 | 1 | 26 | ··· | 26 | 2 | ··· | 2 | 13 | 13 | 13 | 13 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C4○D4 | D13 | D26 | D26 | D52⋊C2 |
kernel | C2×D52⋊C2 | C2×C4×D13 | C2×D52 | D52⋊C2 | Q8×C26 | C26 | C2×Q8 | C2×C4 | Q8 | C2 |
# reps | 1 | 3 | 3 | 8 | 1 | 4 | 6 | 18 | 24 | 12 |
Matrix representation of C2×D52⋊C2 ►in GL4(𝔽53) generated by
52 | 0 | 0 | 0 |
0 | 52 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
9 | 9 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 30 | 0 |
0 | 0 | 49 | 23 |
36 | 24 | 0 | 0 |
41 | 17 | 0 | 0 |
0 | 0 | 5 | 22 |
0 | 0 | 23 | 48 |
49 | 2 | 0 | 0 |
19 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 14 | 52 |
G:=sub<GL(4,GF(53))| [52,0,0,0,0,52,0,0,0,0,1,0,0,0,0,1],[9,0,0,0,9,6,0,0,0,0,30,49,0,0,0,23],[36,41,0,0,24,17,0,0,0,0,5,23,0,0,22,48],[49,19,0,0,2,4,0,0,0,0,1,14,0,0,0,52] >;
C2×D52⋊C2 in GAP, Magma, Sage, TeX
C_2\times D_{52}\rtimes C_2
% in TeX
G:=Group("C2xD52:C2");
// GroupNames label
G:=SmallGroup(416,220);
// by ID
G=gap.SmallGroup(416,220);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,86,579,159,69,13829]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^52=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d=b^25,d*c*d=b^50*c>;
// generators/relations