Extensions 1→N→G→Q→1 with N=C8×D13 and Q=C2

Direct product G=N×Q with N=C8×D13 and Q=C2
dρLabelID
C2×C8×D13208C2xC8xD13416,120

Semidirect products G=N:Q with N=C8×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×D13)⋊1C2 = D8×D13φ: C2/C1C2 ⊆ Out C8×D131044+(C8xD13):1C2416,131
(C8×D13)⋊2C2 = D83D13φ: C2/C1C2 ⊆ Out C8×D132084-(C8xD13):2C2416,133
(C8×D13)⋊3C2 = D104⋊C2φ: C2/C1C2 ⊆ Out C8×D132084+(C8xD13):3C2416,140
(C8×D13)⋊4C2 = SD16×D13φ: C2/C1C2 ⊆ Out C8×D131044(C8xD13):4C2416,134
(C8×D13)⋊5C2 = D26.6D4φ: C2/C1C2 ⊆ Out C8×D132084(C8xD13):5C2416,137
(C8×D13)⋊6C2 = D52.3C4φ: C2/C1C2 ⊆ Out C8×D132082(C8xD13):6C2416,122
(C8×D13)⋊7C2 = M4(2)×D13φ: C2/C1C2 ⊆ Out C8×D131044(C8xD13):7C2416,127
(C8×D13)⋊8C2 = D52.2C4φ: C2/C1C2 ⊆ Out C8×D132084(C8xD13):8C2416,128

Non-split extensions G=N.Q with N=C8×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×D13).1C2 = Q16×D13φ: C2/C1C2 ⊆ Out C8×D132084-(C8xD13).1C2416,138
(C8×D13).2C2 = C208⋊C2φ: C2/C1C2 ⊆ Out C8×D132082(C8xD13).2C2416,5
(C8×D13).3C2 = D13.D8φ: C2/C1C2 ⊆ Out C8×D131044(C8xD13).3C2416,69
(C8×D13).4C2 = C104.1C4φ: C2/C1C2 ⊆ Out C8×D132084(C8xD13).4C2416,71
(C8×D13).5C2 = D26.8D4φ: C2/C1C2 ⊆ Out C8×D131044(C8xD13).5C2416,68
(C8×D13).6C2 = C104.C4φ: C2/C1C2 ⊆ Out C8×D132084(C8xD13).6C2416,70
(C8×D13).7C2 = D13⋊C16φ: C2/C1C2 ⊆ Out C8×D132084(C8xD13).7C2416,64
(C8×D13).8C2 = D26.C8φ: C2/C1C2 ⊆ Out C8×D132084(C8xD13).8C2416,65
(C8×D13).9C2 = C8×C13⋊C4φ: C2/C1C2 ⊆ Out C8×D131044(C8xD13).9C2416,66
(C8×D13).10C2 = C104⋊C4φ: C2/C1C2 ⊆ Out C8×D131044(C8xD13).10C2416,67
(C8×D13).11C2 = C16×D13φ: trivial image2082(C8xD13).11C2416,4

׿
×
𝔽