Extensions 1→N→G→Q→1 with N=C4 and Q=Dic26

Direct product G=N×Q with N=C4 and Q=Dic26

Semidirect products G=N:Q with N=C4 and Q=Dic26
extensionφ:Q→Aut NdρLabelID
C41Dic26 = C52⋊Q8φ: Dic26/Dic13C2 ⊆ Aut C4416C4:1Dic26416,109
C42Dic26 = C522Q8φ: Dic26/C52C2 ⊆ Aut C4416C4:2Dic26416,90

Non-split extensions G=N.Q with N=C4 and Q=Dic26
extensionφ:Q→Aut NdρLabelID
C4.1Dic26 = C26.D8φ: Dic26/Dic13C2 ⊆ Aut C4416C4.1Dic26416,14
C4.2Dic26 = C52.Q8φ: Dic26/Dic13C2 ⊆ Aut C4416C4.2Dic26416,15
C4.3Dic26 = C4.Dic26φ: Dic26/Dic13C2 ⊆ Aut C4416C4.3Dic26416,111
C4.4Dic26 = C1046C4φ: Dic26/C52C2 ⊆ Aut C4416C4.4Dic26416,24
C4.5Dic26 = C1045C4φ: Dic26/C52C2 ⊆ Aut C4416C4.5Dic26416,25
C4.6Dic26 = C52.6Q8φ: Dic26/C52C2 ⊆ Aut C4416C4.6Dic26416,91
C4.7Dic26 = C523C8central extension (φ=1)416C4.7Dic26416,11
C4.8Dic26 = C52.8Q8central extension (φ=1)416C4.8Dic26416,21