# Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C13⋊C4

Direct product G=N×Q with N=C2 and Q=C22×C13⋊C4
dρLabelID
C23×C13⋊C4104C2^3xC13:C4416,233

Non-split extensions G=N.Q with N=C2 and Q=C22×C13⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C13⋊C4) = C2×D13⋊C8central extension (φ=1)208C2.1(C2^2xC13:C4)416,199
C2.2(C22×C13⋊C4) = C2×C4×C13⋊C4central extension (φ=1)104C2.2(C2^2xC13:C4)416,202
C2.3(C22×C13⋊C4) = C22×C13⋊C8central extension (φ=1)416C2.3(C2^2xC13:C4)416,209
C2.4(C22×C13⋊C4) = C2×C52.C4central stem extension (φ=1)208C2.4(C2^2xC13:C4)416,200
C2.5(C22×C13⋊C4) = D13⋊M4(2)central stem extension (φ=1)1044C2.5(C2^2xC13:C4)416,201
C2.6(C22×C13⋊C4) = C2×C52⋊C4central stem extension (φ=1)104C2.6(C2^2xC13:C4)416,203
C2.7(C22×C13⋊C4) = D26.C23central stem extension (φ=1)1044C2.7(C2^2xC13:C4)416,204
C2.8(C22×C13⋊C4) = Dic26.C4central stem extension (φ=1)2088-C2.8(C2^2xC13:C4)416,205
C2.9(C22×C13⋊C4) = D4×C13⋊C4central stem extension (φ=1)528+C2.9(C2^2xC13:C4)416,206
C2.10(C22×C13⋊C4) = D52.C4central stem extension (φ=1)2088+C2.10(C2^2xC13:C4)416,207
C2.11(C22×C13⋊C4) = Q8×C13⋊C4central stem extension (φ=1)1048-C2.11(C2^2xC13:C4)416,208
C2.12(C22×C13⋊C4) = C2×C13⋊M4(2)central stem extension (φ=1)208C2.12(C2^2xC13:C4)416,210
C2.13(C22×C13⋊C4) = C2×D13.D4central stem extension (φ=1)104C2.13(C2^2xC13:C4)416,211

׿
×
𝔽