Copied to
clipboard

G = C2×C52.C4order 416 = 25·13

Direct product of C2 and C52.C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C52.C4, C261M4(2), Dic13.10C23, C13⋊C81C22, (C2×C52).6C4, C52.12(C2×C4), (C4×D13).4C4, C131(C2×M4(2)), D26.13(C2×C4), C26.2(C22×C4), (C22×D13).8C4, Dic13.15(C2×C4), (C4×D13).29C22, (C2×Dic13).55C22, (C2×C13⋊C8)⋊3C2, C4.12(C2×C13⋊C4), (C2×C4).7(C13⋊C4), (C2×C4×D13).13C2, C2.4(C22×C13⋊C4), (C2×C26).14(C2×C4), C22.16(C2×C13⋊C4), SmallGroup(416,200)

Series: Derived Chief Lower central Upper central

C1C26 — C2×C52.C4
C1C13C26Dic13C13⋊C8C2×C13⋊C8 — C2×C52.C4
C13C26 — C2×C52.C4
C1C22C2×C4

Generators and relations for C2×C52.C4
 G = < a,b,c | a2=b52=1, c4=b26, ab=ba, ac=ca, cbc-1=b31 >

Subgroups: 436 in 68 conjugacy classes, 38 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C13, C2×C8, M4(2), C22×C4, D13, C26, C26, C2×M4(2), Dic13, C52, D26, D26, C2×C26, C13⋊C8, C4×D13, C2×Dic13, C2×C52, C22×D13, C52.C4, C2×C13⋊C8, C2×C4×D13, C2×C52.C4
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C2×M4(2), C13⋊C4, C2×C13⋊C4, C52.C4, C22×C13⋊C4, C2×C52.C4

Smallest permutation representation of C2×C52.C4
On 208 points
Generators in S208
(1 140)(2 141)(3 142)(4 143)(5 144)(6 145)(7 146)(8 147)(9 148)(10 149)(11 150)(12 151)(13 152)(14 153)(15 154)(16 155)(17 156)(18 105)(19 106)(20 107)(21 108)(22 109)(23 110)(24 111)(25 112)(26 113)(27 114)(28 115)(29 116)(30 117)(31 118)(32 119)(33 120)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 128)(42 129)(43 130)(44 131)(45 132)(46 133)(47 134)(48 135)(49 136)(50 137)(51 138)(52 139)(53 208)(54 157)(55 158)(56 159)(57 160)(58 161)(59 162)(60 163)(61 164)(62 165)(63 166)(64 167)(65 168)(66 169)(67 170)(68 171)(69 172)(70 173)(71 174)(72 175)(73 176)(74 177)(75 178)(76 179)(77 180)(78 181)(79 182)(80 183)(81 184)(82 185)(83 186)(84 187)(85 188)(86 189)(87 190)(88 191)(89 192)(90 193)(91 194)(92 195)(93 196)(94 197)(95 198)(96 199)(97 200)(98 201)(99 202)(100 203)(101 204)(102 205)(103 206)(104 207)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 170 127 80 27 196 153 54)(2 165 152 59 28 191 126 85)(3 160 125 90 29 186 151 64)(4 207 150 69 30 181 124 95)(5 202 123 100 31 176 149 74)(6 197 148 79 32 171 122 53)(7 192 121 58 33 166 147 84)(8 187 146 89 34 161 120 63)(9 182 119 68 35 208 145 94)(10 177 144 99 36 203 118 73)(11 172 117 78 37 198 143 104)(12 167 142 57 38 193 116 83)(13 162 115 88 39 188 141 62)(14 157 140 67 40 183 114 93)(15 204 113 98 41 178 139 72)(16 199 138 77 42 173 112 103)(17 194 111 56 43 168 137 82)(18 189 136 87 44 163 110 61)(19 184 109 66 45 158 135 92)(20 179 134 97 46 205 108 71)(21 174 107 76 47 200 133 102)(22 169 132 55 48 195 106 81)(23 164 105 86 49 190 131 60)(24 159 130 65 50 185 156 91)(25 206 155 96 51 180 129 70)(26 201 128 75 52 175 154 101)

G:=sub<Sym(208)| (1,140)(2,141)(3,142)(4,143)(5,144)(6,145)(7,146)(8,147)(9,148)(10,149)(11,150)(12,151)(13,152)(14,153)(15,154)(16,155)(17,156)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,138)(52,139)(53,208)(54,157)(55,158)(56,159)(57,160)(58,161)(59,162)(60,163)(61,164)(62,165)(63,166)(64,167)(65,168)(66,169)(67,170)(68,171)(69,172)(70,173)(71,174)(72,175)(73,176)(74,177)(75,178)(76,179)(77,180)(78,181)(79,182)(80,183)(81,184)(82,185)(83,186)(84,187)(85,188)(86,189)(87,190)(88,191)(89,192)(90,193)(91,194)(92,195)(93,196)(94,197)(95,198)(96,199)(97,200)(98,201)(99,202)(100,203)(101,204)(102,205)(103,206)(104,207), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,170,127,80,27,196,153,54)(2,165,152,59,28,191,126,85)(3,160,125,90,29,186,151,64)(4,207,150,69,30,181,124,95)(5,202,123,100,31,176,149,74)(6,197,148,79,32,171,122,53)(7,192,121,58,33,166,147,84)(8,187,146,89,34,161,120,63)(9,182,119,68,35,208,145,94)(10,177,144,99,36,203,118,73)(11,172,117,78,37,198,143,104)(12,167,142,57,38,193,116,83)(13,162,115,88,39,188,141,62)(14,157,140,67,40,183,114,93)(15,204,113,98,41,178,139,72)(16,199,138,77,42,173,112,103)(17,194,111,56,43,168,137,82)(18,189,136,87,44,163,110,61)(19,184,109,66,45,158,135,92)(20,179,134,97,46,205,108,71)(21,174,107,76,47,200,133,102)(22,169,132,55,48,195,106,81)(23,164,105,86,49,190,131,60)(24,159,130,65,50,185,156,91)(25,206,155,96,51,180,129,70)(26,201,128,75,52,175,154,101)>;

G:=Group( (1,140)(2,141)(3,142)(4,143)(5,144)(6,145)(7,146)(8,147)(9,148)(10,149)(11,150)(12,151)(13,152)(14,153)(15,154)(16,155)(17,156)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,138)(52,139)(53,208)(54,157)(55,158)(56,159)(57,160)(58,161)(59,162)(60,163)(61,164)(62,165)(63,166)(64,167)(65,168)(66,169)(67,170)(68,171)(69,172)(70,173)(71,174)(72,175)(73,176)(74,177)(75,178)(76,179)(77,180)(78,181)(79,182)(80,183)(81,184)(82,185)(83,186)(84,187)(85,188)(86,189)(87,190)(88,191)(89,192)(90,193)(91,194)(92,195)(93,196)(94,197)(95,198)(96,199)(97,200)(98,201)(99,202)(100,203)(101,204)(102,205)(103,206)(104,207), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,170,127,80,27,196,153,54)(2,165,152,59,28,191,126,85)(3,160,125,90,29,186,151,64)(4,207,150,69,30,181,124,95)(5,202,123,100,31,176,149,74)(6,197,148,79,32,171,122,53)(7,192,121,58,33,166,147,84)(8,187,146,89,34,161,120,63)(9,182,119,68,35,208,145,94)(10,177,144,99,36,203,118,73)(11,172,117,78,37,198,143,104)(12,167,142,57,38,193,116,83)(13,162,115,88,39,188,141,62)(14,157,140,67,40,183,114,93)(15,204,113,98,41,178,139,72)(16,199,138,77,42,173,112,103)(17,194,111,56,43,168,137,82)(18,189,136,87,44,163,110,61)(19,184,109,66,45,158,135,92)(20,179,134,97,46,205,108,71)(21,174,107,76,47,200,133,102)(22,169,132,55,48,195,106,81)(23,164,105,86,49,190,131,60)(24,159,130,65,50,185,156,91)(25,206,155,96,51,180,129,70)(26,201,128,75,52,175,154,101) );

G=PermutationGroup([[(1,140),(2,141),(3,142),(4,143),(5,144),(6,145),(7,146),(8,147),(9,148),(10,149),(11,150),(12,151),(13,152),(14,153),(15,154),(16,155),(17,156),(18,105),(19,106),(20,107),(21,108),(22,109),(23,110),(24,111),(25,112),(26,113),(27,114),(28,115),(29,116),(30,117),(31,118),(32,119),(33,120),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,128),(42,129),(43,130),(44,131),(45,132),(46,133),(47,134),(48,135),(49,136),(50,137),(51,138),(52,139),(53,208),(54,157),(55,158),(56,159),(57,160),(58,161),(59,162),(60,163),(61,164),(62,165),(63,166),(64,167),(65,168),(66,169),(67,170),(68,171),(69,172),(70,173),(71,174),(72,175),(73,176),(74,177),(75,178),(76,179),(77,180),(78,181),(79,182),(80,183),(81,184),(82,185),(83,186),(84,187),(85,188),(86,189),(87,190),(88,191),(89,192),(90,193),(91,194),(92,195),(93,196),(94,197),(95,198),(96,199),(97,200),(98,201),(99,202),(100,203),(101,204),(102,205),(103,206),(104,207)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,170,127,80,27,196,153,54),(2,165,152,59,28,191,126,85),(3,160,125,90,29,186,151,64),(4,207,150,69,30,181,124,95),(5,202,123,100,31,176,149,74),(6,197,148,79,32,171,122,53),(7,192,121,58,33,166,147,84),(8,187,146,89,34,161,120,63),(9,182,119,68,35,208,145,94),(10,177,144,99,36,203,118,73),(11,172,117,78,37,198,143,104),(12,167,142,57,38,193,116,83),(13,162,115,88,39,188,141,62),(14,157,140,67,40,183,114,93),(15,204,113,98,41,178,139,72),(16,199,138,77,42,173,112,103),(17,194,111,56,43,168,137,82),(18,189,136,87,44,163,110,61),(19,184,109,66,45,158,135,92),(20,179,134,97,46,205,108,71),(21,174,107,76,47,200,133,102),(22,169,132,55,48,195,106,81),(23,164,105,86,49,190,131,60),(24,159,130,65,50,185,156,91),(25,206,155,96,51,180,129,70),(26,201,128,75,52,175,154,101)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F8A···8H13A13B13C26A···26I52A···52L
order1222224444448···813131326···2652···52
size11112626221313131326···264444···44···4

44 irreducible representations

dim111111124444
type+++++++
imageC1C2C2C2C4C4C4M4(2)C13⋊C4C2×C13⋊C4C2×C13⋊C4C52.C4
kernelC2×C52.C4C52.C4C2×C13⋊C8C2×C4×D13C4×D13C2×C52C22×D13C26C2×C4C4C22C2
# reps1421422436312

Matrix representation of C2×C52.C4 in GL6(𝔽313)

31200000
03120000
001000
000100
000010
000001
,
2500000
02880000
001012729282
002906273
00266676252
0028913444300
,
010000
2500000
0062162553
00169229259269
00175195257103
0016389226134

G:=sub<GL(6,GF(313))| [312,0,0,0,0,0,0,312,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[25,0,0,0,0,0,0,288,0,0,0,0,0,0,101,2,266,289,0,0,272,90,67,134,0,0,92,62,62,44,0,0,82,73,52,300],[0,25,0,0,0,0,1,0,0,0,0,0,0,0,6,169,175,163,0,0,216,229,195,89,0,0,255,259,257,226,0,0,3,269,103,134] >;

C2×C52.C4 in GAP, Magma, Sage, TeX

C_2\times C_{52}.C_4
% in TeX

G:=Group("C2xC52.C4");
// GroupNames label

G:=SmallGroup(416,200);
// by ID

G=gap.SmallGroup(416,200);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,48,362,86,69,9221,1751]);
// Polycyclic

G:=Group<a,b,c|a^2=b^52=1,c^4=b^26,a*b=b*a,a*c=c*a,c*b*c^-1=b^31>;
// generators/relations

׿
×
𝔽