# Extensions 1→N→G→Q→1 with N=C23×D13 and Q=C2

Direct product G=N×Q with N=C23×D13 and Q=C2
dρLabelID
C24×D13208C2^4xD13416,234

Semidirect products G=N:Q with N=C23×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×D13)⋊1C2 = C22⋊D52φ: C2/C1C2 ⊆ Out C23×D13104(C2^3xD13):1C2416,103
(C23×D13)⋊2C2 = C23⋊D26φ: C2/C1C2 ⊆ Out C23×D13104(C2^3xD13):2C2416,158
(C23×D13)⋊3C2 = C22×D52φ: C2/C1C2 ⊆ Out C23×D13208(C2^3xD13):3C2416,214
(C23×D13)⋊4C2 = C2×D4×D13φ: C2/C1C2 ⊆ Out C23×D13104(C2^3xD13):4C2416,216
(C23×D13)⋊5C2 = C22×C13⋊D4φ: C2/C1C2 ⊆ Out C23×D13208(C2^3xD13):5C2416,226

Non-split extensions G=N.Q with N=C23×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×D13).1C2 = C22⋊C4×D13φ: C2/C1C2 ⊆ Out C23×D13104(C2^3xD13).1C2416,101
(C23×D13).2C2 = C2×D26⋊C4φ: C2/C1C2 ⊆ Out C23×D13208(C2^3xD13).2C2416,148
(C23×D13).3C2 = C2×D13.D4φ: C2/C1C2 ⊆ Out C23×D13104(C2^3xD13).3C2416,211
(C23×D13).4C2 = C23×C13⋊C4φ: C2/C1C2 ⊆ Out C23×D13104(C2^3xD13).4C2416,233
(C23×D13).5C2 = C22×C4×D13φ: trivial image208(C2^3xD13).5C2416,213

׿
×
𝔽