Extensions 1→N→G→Q→1 with N=C22 and Q=D52

Direct product G=N×Q with N=C22 and Q=D52

Semidirect products G=N:Q with N=C22 and Q=D52
extensionφ:Q→Aut NdρLabelID
C221D52 = C527D4φ: D52/C52C2 ⊆ Aut C22208C2^2:1D52416,151
C222D52 = C22⋊D52φ: D52/D26C2 ⊆ Aut C22104C2^2:2D52416,103

Non-split extensions G=N.Q with N=C22 and Q=D52
extensionφ:Q→Aut NdρLabelID
C22.1D52 = D1047C2φ: D52/C52C2 ⊆ Aut C222082C2^2.1D52416,125
C22.2D52 = C22.2D52φ: D52/D26C2 ⊆ Aut C221044C2^2.2D52416,13
C22.3D52 = D527C4φ: D52/D26C2 ⊆ Aut C221044C2^2.3D52416,32
C22.4D52 = C22.D52φ: D52/D26C2 ⊆ Aut C22208C2^2.4D52416,107
C22.5D52 = C8⋊D26φ: D52/D26C2 ⊆ Aut C221044+C2^2.5D52416,129
C22.6D52 = C8.D26φ: D52/D26C2 ⊆ Aut C222084-C2^2.6D52416,130
C22.7D52 = C52.44D4central extension (φ=1)416C2^2.7D52416,23
C22.8D52 = C1046C4central extension (φ=1)416C2^2.8D52416,24
C22.9D52 = C1045C4central extension (φ=1)416C2^2.9D52416,25
C22.10D52 = D525C4central extension (φ=1)208C2^2.10D52416,28
C22.11D52 = C26.10C42central extension (φ=1)416C2^2.11D52416,38
C22.12D52 = C2×C104⋊C2central extension (φ=1)208C2^2.12D52416,123
C22.13D52 = C2×D104central extension (φ=1)208C2^2.13D52416,124
C22.14D52 = C2×Dic52central extension (φ=1)416C2^2.14D52416,126
C22.15D52 = C2×C523C4central extension (φ=1)416C2^2.15D52416,146
C22.16D52 = C2×D26⋊C4central extension (φ=1)208C2^2.16D52416,148