Copied to
clipboard

G = D214order 428 = 22·107

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D214, C2×D107, C214⋊C2, C107⋊C22, sometimes denoted D428 or Dih214 or Dih428, SmallGroup(428,3)

Series: Derived Chief Lower central Upper central

C1C107 — D214
C1C107D107 — D214
C107 — D214
C1C2

Generators and relations for D214
 G = < a,b | a214=b2=1, bab=a-1 >

107C2
107C2
107C22

Smallest permutation representation of D214
On 214 points
Generators in S214
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214)
(1 214)(2 213)(3 212)(4 211)(5 210)(6 209)(7 208)(8 207)(9 206)(10 205)(11 204)(12 203)(13 202)(14 201)(15 200)(16 199)(17 198)(18 197)(19 196)(20 195)(21 194)(22 193)(23 192)(24 191)(25 190)(26 189)(27 188)(28 187)(29 186)(30 185)(31 184)(32 183)(33 182)(34 181)(35 180)(36 179)(37 178)(38 177)(39 176)(40 175)(41 174)(42 173)(43 172)(44 171)(45 170)(46 169)(47 168)(48 167)(49 166)(50 165)(51 164)(52 163)(53 162)(54 161)(55 160)(56 159)(57 158)(58 157)(59 156)(60 155)(61 154)(62 153)(63 152)(64 151)(65 150)(66 149)(67 148)(68 147)(69 146)(70 145)(71 144)(72 143)(73 142)(74 141)(75 140)(76 139)(77 138)(78 137)(79 136)(80 135)(81 134)(82 133)(83 132)(84 131)(85 130)(86 129)(87 128)(88 127)(89 126)(90 125)(91 124)(92 123)(93 122)(94 121)(95 120)(96 119)(97 118)(98 117)(99 116)(100 115)(101 114)(102 113)(103 112)(104 111)(105 110)(106 109)(107 108)

G:=sub<Sym(214)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214), (1,214)(2,213)(3,212)(4,211)(5,210)(6,209)(7,208)(8,207)(9,206)(10,205)(11,204)(12,203)(13,202)(14,201)(15,200)(16,199)(17,198)(18,197)(19,196)(20,195)(21,194)(22,193)(23,192)(24,191)(25,190)(26,189)(27,188)(28,187)(29,186)(30,185)(31,184)(32,183)(33,182)(34,181)(35,180)(36,179)(37,178)(38,177)(39,176)(40,175)(41,174)(42,173)(43,172)(44,171)(45,170)(46,169)(47,168)(48,167)(49,166)(50,165)(51,164)(52,163)(53,162)(54,161)(55,160)(56,159)(57,158)(58,157)(59,156)(60,155)(61,154)(62,153)(63,152)(64,151)(65,150)(66,149)(67,148)(68,147)(69,146)(70,145)(71,144)(72,143)(73,142)(74,141)(75,140)(76,139)(77,138)(78,137)(79,136)(80,135)(81,134)(82,133)(83,132)(84,131)(85,130)(86,129)(87,128)(88,127)(89,126)(90,125)(91,124)(92,123)(93,122)(94,121)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214), (1,214)(2,213)(3,212)(4,211)(5,210)(6,209)(7,208)(8,207)(9,206)(10,205)(11,204)(12,203)(13,202)(14,201)(15,200)(16,199)(17,198)(18,197)(19,196)(20,195)(21,194)(22,193)(23,192)(24,191)(25,190)(26,189)(27,188)(28,187)(29,186)(30,185)(31,184)(32,183)(33,182)(34,181)(35,180)(36,179)(37,178)(38,177)(39,176)(40,175)(41,174)(42,173)(43,172)(44,171)(45,170)(46,169)(47,168)(48,167)(49,166)(50,165)(51,164)(52,163)(53,162)(54,161)(55,160)(56,159)(57,158)(58,157)(59,156)(60,155)(61,154)(62,153)(63,152)(64,151)(65,150)(66,149)(67,148)(68,147)(69,146)(70,145)(71,144)(72,143)(73,142)(74,141)(75,140)(76,139)(77,138)(78,137)(79,136)(80,135)(81,134)(82,133)(83,132)(84,131)(85,130)(86,129)(87,128)(88,127)(89,126)(90,125)(91,124)(92,123)(93,122)(94,121)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214)], [(1,214),(2,213),(3,212),(4,211),(5,210),(6,209),(7,208),(8,207),(9,206),(10,205),(11,204),(12,203),(13,202),(14,201),(15,200),(16,199),(17,198),(18,197),(19,196),(20,195),(21,194),(22,193),(23,192),(24,191),(25,190),(26,189),(27,188),(28,187),(29,186),(30,185),(31,184),(32,183),(33,182),(34,181),(35,180),(36,179),(37,178),(38,177),(39,176),(40,175),(41,174),(42,173),(43,172),(44,171),(45,170),(46,169),(47,168),(48,167),(49,166),(50,165),(51,164),(52,163),(53,162),(54,161),(55,160),(56,159),(57,158),(58,157),(59,156),(60,155),(61,154),(62,153),(63,152),(64,151),(65,150),(66,149),(67,148),(68,147),(69,146),(70,145),(71,144),(72,143),(73,142),(74,141),(75,140),(76,139),(77,138),(78,137),(79,136),(80,135),(81,134),(82,133),(83,132),(84,131),(85,130),(86,129),(87,128),(88,127),(89,126),(90,125),(91,124),(92,123),(93,122),(94,121),(95,120),(96,119),(97,118),(98,117),(99,116),(100,115),(101,114),(102,113),(103,112),(104,111),(105,110),(106,109),(107,108)])

110 conjugacy classes

class 1 2A2B2C107A···107BA214A···214BA
order1222107···107214···214
size111071072···22···2

110 irreducible representations

dim11122
type+++++
imageC1C2C2D107D214
kernelD214D107C214C2C1
# reps1215353

Matrix representation of D214 in GL3(𝔽643) generated by

64200
01967
0576576
,
100
01967
081624
G:=sub<GL(3,GF(643))| [642,0,0,0,19,576,0,67,576],[1,0,0,0,19,81,0,67,624] >;

D214 in GAP, Magma, Sage, TeX

D_{214}
% in TeX

G:=Group("D214");
// GroupNames label

G:=SmallGroup(428,3);
// by ID

G=gap.SmallGroup(428,3);
# by ID

G:=PCGroup([3,-2,-2,-107,3818]);
// Polycyclic

G:=Group<a,b|a^214=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D214 in TeX

׿
×
𝔽