Extensions 1→N→G→Q→1 with N=C2 and Q=C2×He3⋊C4

Direct product G=N×Q with N=C2 and Q=C2×He3⋊C4
dρLabelID
C22×He3⋊C472C2^2xHe3:C4432,543


Non-split extensions G=N.Q with N=C2 and Q=C2×He3⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×He3⋊C4) = He32(C2×C8)central extension (φ=1)723C2.1(C2xHe3:C4)432,273
C2.2(C2×He3⋊C4) = C4×He3⋊C4central extension (φ=1)723C2.2(C2xHe3:C4)432,275
C2.3(C2×He3⋊C4) = C2×He32C8central extension (φ=1)144C2.3(C2xHe3:C4)432,277
C2.4(C2×He3⋊C4) = He31M4(2)central stem extension (φ=1)726C2.4(C2xHe3:C4)432,274
C2.5(C2×He3⋊C4) = C4⋊(He3⋊C4)central stem extension (φ=1)726C2.5(C2xHe3:C4)432,276
C2.6(C2×He3⋊C4) = He34M4(2)central stem extension (φ=1)726C2.6(C2xHe3:C4)432,278
C2.7(C2×He3⋊C4) = C22⋊(He3⋊C4)central stem extension (φ=1)366C2.7(C2xHe3:C4)432,279

׿
×
𝔽