Copied to
clipboard

G = C2×He32C8order 432 = 24·33

Direct product of C2 and He32C8

direct product, non-abelian, soluble

Aliases: C2×He32C8, He35(C2×C8), (C2×He3)⋊2C8, He33C4.2C4, C6.3(C322C8), C22.2(He3⋊C4), (C22×He3).1C4, He33C4.9C22, C2.3(C2×He3⋊C4), C3.(C2×C322C8), C6.17(C2×C32⋊C4), (C2×C6).6(C32⋊C4), (C2×He3).5(C2×C4), (C2×He33C4).3C2, SmallGroup(432,277)

Series: Derived Chief Lower central Upper central

C1C3He3 — C2×He32C8
C1C3He3C2×He3He33C4He32C8 — C2×He32C8
He3 — C2×He32C8
C1C2×C6

Generators and relations for C2×He32C8
 G = < a,b,c,d,e | a2=b3=c3=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=bcd, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 281 in 65 conjugacy classes, 21 normal (13 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C8, C2×C4, C32, Dic3, C12, C2×C6, C2×C6, C2×C8, C3×C6, C24, C2×Dic3, C2×C12, He3, C3×Dic3, C62, C2×C24, C2×He3, C2×He3, C6×Dic3, He33C4, C22×He3, He32C8, C2×He33C4, C2×He32C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C2×C8, C32⋊C4, C322C8, C2×C32⋊C4, He3⋊C4, C2×C322C8, He32C8, C2×He3⋊C4, C2×He32C8

Smallest permutation representation of C2×He32C8
On 144 points
Generators in S144
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 65)(9 84)(10 85)(11 86)(12 87)(13 88)(14 81)(15 82)(16 83)(17 92)(18 93)(19 94)(20 95)(21 96)(22 89)(23 90)(24 91)(25 54)(26 55)(27 56)(28 49)(29 50)(30 51)(31 52)(32 53)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(57 108)(58 109)(59 110)(60 111)(61 112)(62 105)(63 106)(64 107)(73 124)(74 125)(75 126)(76 127)(77 128)(78 121)(79 122)(80 123)(97 130)(98 131)(99 132)(100 133)(101 134)(102 135)(103 136)(104 129)
(1 15 31)(2 76 46)(4 130 64)(5 11 27)(6 80 42)(8 134 60)(10 120 78)(12 17 132)(14 116 74)(16 21 136)(18 59 73)(19 30 44)(22 63 77)(23 26 48)(28 58 114)(32 62 118)(33 98 137)(34 49 109)(35 100 139)(36 125 81)(37 102 141)(38 53 105)(39 104 143)(40 121 85)(41 113 131)(43 115 133)(45 117 135)(47 119 129)(51 140 94)(52 66 82)(55 144 90)(56 70 86)(65 101 111)(67 127 142)(69 97 107)(71 123 138)(83 96 103)(87 92 99)(89 106 128)(93 110 124)
(1 15 31)(2 16 32)(3 9 25)(4 10 26)(5 11 27)(6 12 28)(7 13 29)(8 14 30)(17 58 80)(18 59 73)(19 60 74)(20 61 75)(21 62 76)(22 63 77)(23 64 78)(24 57 79)(33 137 98)(34 138 99)(35 139 100)(36 140 101)(37 141 102)(38 142 103)(39 143 104)(40 144 97)(41 131 113)(42 132 114)(43 133 115)(44 134 116)(45 135 117)(46 136 118)(47 129 119)(48 130 120)(49 71 87)(50 72 88)(51 65 81)(52 66 82)(53 67 83)(54 68 84)(55 69 85)(56 70 86)(89 106 128)(90 107 121)(91 108 122)(92 109 123)(93 110 124)(94 111 125)(95 112 126)(96 105 127)
(1 20 45)(2 136 21)(3 47 22)(4 23 130)(5 24 41)(6 132 17)(7 43 18)(8 19 134)(9 129 63)(10 64 120)(11 57 131)(12 114 58)(13 133 59)(14 60 116)(15 61 135)(16 118 62)(25 119 77)(26 78 48)(27 79 113)(28 42 80)(29 115 73)(30 74 44)(31 75 117)(32 46 76)(33 56 122)(34 109 87)(35 124 50)(36 81 111)(37 52 126)(38 105 83)(39 128 54)(40 85 107)(49 138 123)(51 125 140)(53 142 127)(55 121 144)(65 94 101)(66 95 141)(67 103 96)(68 143 89)(69 90 97)(70 91 137)(71 99 92)(72 139 93)(82 112 102)(84 104 106)(86 108 98)(88 100 110)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,65)(9,84)(10,85)(11,86)(12,87)(13,88)(14,81)(15,82)(16,83)(17,92)(18,93)(19,94)(20,95)(21,96)(22,89)(23,90)(24,91)(25,54)(26,55)(27,56)(28,49)(29,50)(30,51)(31,52)(32,53)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(57,108)(58,109)(59,110)(60,111)(61,112)(62,105)(63,106)(64,107)(73,124)(74,125)(75,126)(76,127)(77,128)(78,121)(79,122)(80,123)(97,130)(98,131)(99,132)(100,133)(101,134)(102,135)(103,136)(104,129), (1,15,31)(2,76,46)(4,130,64)(5,11,27)(6,80,42)(8,134,60)(10,120,78)(12,17,132)(14,116,74)(16,21,136)(18,59,73)(19,30,44)(22,63,77)(23,26,48)(28,58,114)(32,62,118)(33,98,137)(34,49,109)(35,100,139)(36,125,81)(37,102,141)(38,53,105)(39,104,143)(40,121,85)(41,113,131)(43,115,133)(45,117,135)(47,119,129)(51,140,94)(52,66,82)(55,144,90)(56,70,86)(65,101,111)(67,127,142)(69,97,107)(71,123,138)(83,96,103)(87,92,99)(89,106,128)(93,110,124), (1,15,31)(2,16,32)(3,9,25)(4,10,26)(5,11,27)(6,12,28)(7,13,29)(8,14,30)(17,58,80)(18,59,73)(19,60,74)(20,61,75)(21,62,76)(22,63,77)(23,64,78)(24,57,79)(33,137,98)(34,138,99)(35,139,100)(36,140,101)(37,141,102)(38,142,103)(39,143,104)(40,144,97)(41,131,113)(42,132,114)(43,133,115)(44,134,116)(45,135,117)(46,136,118)(47,129,119)(48,130,120)(49,71,87)(50,72,88)(51,65,81)(52,66,82)(53,67,83)(54,68,84)(55,69,85)(56,70,86)(89,106,128)(90,107,121)(91,108,122)(92,109,123)(93,110,124)(94,111,125)(95,112,126)(96,105,127), (1,20,45)(2,136,21)(3,47,22)(4,23,130)(5,24,41)(6,132,17)(7,43,18)(8,19,134)(9,129,63)(10,64,120)(11,57,131)(12,114,58)(13,133,59)(14,60,116)(15,61,135)(16,118,62)(25,119,77)(26,78,48)(27,79,113)(28,42,80)(29,115,73)(30,74,44)(31,75,117)(32,46,76)(33,56,122)(34,109,87)(35,124,50)(36,81,111)(37,52,126)(38,105,83)(39,128,54)(40,85,107)(49,138,123)(51,125,140)(53,142,127)(55,121,144)(65,94,101)(66,95,141)(67,103,96)(68,143,89)(69,90,97)(70,91,137)(71,99,92)(72,139,93)(82,112,102)(84,104,106)(86,108,98)(88,100,110), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)>;

G:=Group( (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,65)(9,84)(10,85)(11,86)(12,87)(13,88)(14,81)(15,82)(16,83)(17,92)(18,93)(19,94)(20,95)(21,96)(22,89)(23,90)(24,91)(25,54)(26,55)(27,56)(28,49)(29,50)(30,51)(31,52)(32,53)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(57,108)(58,109)(59,110)(60,111)(61,112)(62,105)(63,106)(64,107)(73,124)(74,125)(75,126)(76,127)(77,128)(78,121)(79,122)(80,123)(97,130)(98,131)(99,132)(100,133)(101,134)(102,135)(103,136)(104,129), (1,15,31)(2,76,46)(4,130,64)(5,11,27)(6,80,42)(8,134,60)(10,120,78)(12,17,132)(14,116,74)(16,21,136)(18,59,73)(19,30,44)(22,63,77)(23,26,48)(28,58,114)(32,62,118)(33,98,137)(34,49,109)(35,100,139)(36,125,81)(37,102,141)(38,53,105)(39,104,143)(40,121,85)(41,113,131)(43,115,133)(45,117,135)(47,119,129)(51,140,94)(52,66,82)(55,144,90)(56,70,86)(65,101,111)(67,127,142)(69,97,107)(71,123,138)(83,96,103)(87,92,99)(89,106,128)(93,110,124), (1,15,31)(2,16,32)(3,9,25)(4,10,26)(5,11,27)(6,12,28)(7,13,29)(8,14,30)(17,58,80)(18,59,73)(19,60,74)(20,61,75)(21,62,76)(22,63,77)(23,64,78)(24,57,79)(33,137,98)(34,138,99)(35,139,100)(36,140,101)(37,141,102)(38,142,103)(39,143,104)(40,144,97)(41,131,113)(42,132,114)(43,133,115)(44,134,116)(45,135,117)(46,136,118)(47,129,119)(48,130,120)(49,71,87)(50,72,88)(51,65,81)(52,66,82)(53,67,83)(54,68,84)(55,69,85)(56,70,86)(89,106,128)(90,107,121)(91,108,122)(92,109,123)(93,110,124)(94,111,125)(95,112,126)(96,105,127), (1,20,45)(2,136,21)(3,47,22)(4,23,130)(5,24,41)(6,132,17)(7,43,18)(8,19,134)(9,129,63)(10,64,120)(11,57,131)(12,114,58)(13,133,59)(14,60,116)(15,61,135)(16,118,62)(25,119,77)(26,78,48)(27,79,113)(28,42,80)(29,115,73)(30,74,44)(31,75,117)(32,46,76)(33,56,122)(34,109,87)(35,124,50)(36,81,111)(37,52,126)(38,105,83)(39,128,54)(40,85,107)(49,138,123)(51,125,140)(53,142,127)(55,121,144)(65,94,101)(66,95,141)(67,103,96)(68,143,89)(69,90,97)(70,91,137)(71,99,92)(72,139,93)(82,112,102)(84,104,106)(86,108,98)(88,100,110), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,65),(9,84),(10,85),(11,86),(12,87),(13,88),(14,81),(15,82),(16,83),(17,92),(18,93),(19,94),(20,95),(21,96),(22,89),(23,90),(24,91),(25,54),(26,55),(27,56),(28,49),(29,50),(30,51),(31,52),(32,53),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(57,108),(58,109),(59,110),(60,111),(61,112),(62,105),(63,106),(64,107),(73,124),(74,125),(75,126),(76,127),(77,128),(78,121),(79,122),(80,123),(97,130),(98,131),(99,132),(100,133),(101,134),(102,135),(103,136),(104,129)], [(1,15,31),(2,76,46),(4,130,64),(5,11,27),(6,80,42),(8,134,60),(10,120,78),(12,17,132),(14,116,74),(16,21,136),(18,59,73),(19,30,44),(22,63,77),(23,26,48),(28,58,114),(32,62,118),(33,98,137),(34,49,109),(35,100,139),(36,125,81),(37,102,141),(38,53,105),(39,104,143),(40,121,85),(41,113,131),(43,115,133),(45,117,135),(47,119,129),(51,140,94),(52,66,82),(55,144,90),(56,70,86),(65,101,111),(67,127,142),(69,97,107),(71,123,138),(83,96,103),(87,92,99),(89,106,128),(93,110,124)], [(1,15,31),(2,16,32),(3,9,25),(4,10,26),(5,11,27),(6,12,28),(7,13,29),(8,14,30),(17,58,80),(18,59,73),(19,60,74),(20,61,75),(21,62,76),(22,63,77),(23,64,78),(24,57,79),(33,137,98),(34,138,99),(35,139,100),(36,140,101),(37,141,102),(38,142,103),(39,143,104),(40,144,97),(41,131,113),(42,132,114),(43,133,115),(44,134,116),(45,135,117),(46,136,118),(47,129,119),(48,130,120),(49,71,87),(50,72,88),(51,65,81),(52,66,82),(53,67,83),(54,68,84),(55,69,85),(56,70,86),(89,106,128),(90,107,121),(91,108,122),(92,109,123),(93,110,124),(94,111,125),(95,112,126),(96,105,127)], [(1,20,45),(2,136,21),(3,47,22),(4,23,130),(5,24,41),(6,132,17),(7,43,18),(8,19,134),(9,129,63),(10,64,120),(11,57,131),(12,114,58),(13,133,59),(14,60,116),(15,61,135),(16,118,62),(25,119,77),(26,78,48),(27,79,113),(28,42,80),(29,115,73),(30,74,44),(31,75,117),(32,46,76),(33,56,122),(34,109,87),(35,124,50),(36,81,111),(37,52,126),(38,105,83),(39,128,54),(40,85,107),(49,138,123),(51,125,140),(53,142,127),(55,121,144),(65,94,101),(66,95,141),(67,103,96),(68,143,89),(69,90,97),(70,91,137),(71,99,92),(72,139,93),(82,112,102),(84,104,106),(86,108,98),(88,100,110)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)]])

56 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D6A···6F6G···6L8A···8H12A···12H24A···24P
order1222333344446···66···68···812···1224···24
size111111121299991···112···129···99···99···9

56 irreducible representations

dim111111333444
type++++-+
imageC1C2C2C4C4C8He3⋊C4He32C8C2×He3⋊C4C32⋊C4C322C8C2×C32⋊C4
kernelC2×He32C8He32C8C2×He33C4He33C4C22×He3C2×He3C22C2C2C2×C6C6C6
# reps1212288168242

Matrix representation of C2×He32C8 in GL4(𝔽73) generated by

72000
0100
0010
0001
,
1000
0800
0010
00064
,
1000
0800
0080
0008
,
1000
0001
0100
0010
,
1000
07299
09729
0727265
G:=sub<GL(4,GF(73))| [72,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,8,0,0,0,0,1,0,0,0,0,64],[1,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0],[1,0,0,0,0,72,9,72,0,9,72,72,0,9,9,65] >;

C2×He32C8 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes_2C_8
% in TeX

G:=Group("C2xHe3:2C8");
// GroupNames label

G:=SmallGroup(432,277);
// by ID

G=gap.SmallGroup(432,277);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,58,3924,298,5381,2539,537]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b*c*d,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

׿
×
𝔽