Extensions 1→N→G→Q→1 with N=C2×C108 and Q=C2

Direct product G=N×Q with N=C2×C108 and Q=C2
dρLabelID
C22×C108432C2^2xC108432,53

Semidirect products G=N:Q with N=C2×C108 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C108)⋊1C2 = D54⋊C4φ: C2/C1C2 ⊆ Aut C2×C108216(C2xC108):1C2432,14
(C2×C108)⋊2C2 = C22⋊C4×C27φ: C2/C1C2 ⊆ Aut C2×C108216(C2xC108):2C2432,21
(C2×C108)⋊3C2 = C2×D108φ: C2/C1C2 ⊆ Aut C2×C108216(C2xC108):3C2432,45
(C2×C108)⋊4C2 = D1085C2φ: C2/C1C2 ⊆ Aut C2×C1082162(C2xC108):4C2432,46
(C2×C108)⋊5C2 = C2×C4×D27φ: C2/C1C2 ⊆ Aut C2×C108216(C2xC108):5C2432,44
(C2×C108)⋊6C2 = D4×C54φ: C2/C1C2 ⊆ Aut C2×C108216(C2xC108):6C2432,54
(C2×C108)⋊7C2 = C4○D4×C27φ: C2/C1C2 ⊆ Aut C2×C1082162(C2xC108):7C2432,56

Non-split extensions G=N.Q with N=C2×C108 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C108).1C2 = Dic27⋊C4φ: C2/C1C2 ⊆ Aut C2×C108432(C2xC108).1C2432,12
(C2×C108).2C2 = C4⋊C4×C27φ: C2/C1C2 ⊆ Aut C2×C108432(C2xC108).2C2432,22
(C2×C108).3C2 = C4⋊Dic27φ: C2/C1C2 ⊆ Aut C2×C108432(C2xC108).3C2432,13
(C2×C108).4C2 = C2×Dic54φ: C2/C1C2 ⊆ Aut C2×C108432(C2xC108).4C2432,43
(C2×C108).5C2 = C4.Dic27φ: C2/C1C2 ⊆ Aut C2×C1082162(C2xC108).5C2432,10
(C2×C108).6C2 = C2×C27⋊C8φ: C2/C1C2 ⊆ Aut C2×C108432(C2xC108).6C2432,9
(C2×C108).7C2 = C4×Dic27φ: C2/C1C2 ⊆ Aut C2×C108432(C2xC108).7C2432,11
(C2×C108).8C2 = M4(2)×C27φ: C2/C1C2 ⊆ Aut C2×C1082162(C2xC108).8C2432,24
(C2×C108).9C2 = Q8×C54φ: C2/C1C2 ⊆ Aut C2×C108432(C2xC108).9C2432,55

׿
×
𝔽