Copied to
clipboard

G = C2×D108order 432 = 24·33

Direct product of C2 and D108

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D108, C541D4, C42D54, C6.6D36, C36.55D6, C18.6D12, C1082C22, C12.55D18, D541C22, C54.3C23, C22.10D54, C271(C2×D4), C9.(C2×D12), C3.(C2×D36), (C2×C4)⋊2D27, (C2×C108)⋊3C2, (C2×C36).7S3, (C2×C12).7D9, (C2×C6).31D18, (C2×C18).31D6, (C22×D27)⋊1C2, C6.30(C22×D9), C2.4(C22×D27), (C2×C54).10C22, C18.30(C22×S3), SmallGroup(432,45)

Series: Derived Chief Lower central Upper central

C1C54 — C2×D108
C1C3C9C27C54D54C22×D27 — C2×D108
C27C54 — C2×D108
C1C22C2×C4

Generators and relations for C2×D108
 G = < a,b,c | a2=b108=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 1112 in 108 conjugacy classes, 43 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C9, C12, D6, C2×C6, C2×D4, D9, C18, C18, D12, C2×C12, C22×S3, C27, C36, D18, C2×C18, C2×D12, D27, C54, C54, D36, C2×C36, C22×D9, C108, D54, D54, C2×C54, C2×D36, D108, C2×C108, C22×D27, C2×D108
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, D12, C22×S3, D18, C2×D12, D27, D36, C22×D9, D54, C2×D36, D108, C22×D27, C2×D108

Smallest permutation representation of C2×D108
On 216 points
Generators in S216
(1 196)(2 197)(3 198)(4 199)(5 200)(6 201)(7 202)(8 203)(9 204)(10 205)(11 206)(12 207)(13 208)(14 209)(15 210)(16 211)(17 212)(18 213)(19 214)(20 215)(21 216)(22 109)(23 110)(24 111)(25 112)(26 113)(27 114)(28 115)(29 116)(30 117)(31 118)(32 119)(33 120)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 128)(42 129)(43 130)(44 131)(45 132)(46 133)(47 134)(48 135)(49 136)(50 137)(51 138)(52 139)(53 140)(54 141)(55 142)(56 143)(57 144)(58 145)(59 146)(60 147)(61 148)(62 149)(63 150)(64 151)(65 152)(66 153)(67 154)(68 155)(69 156)(70 157)(71 158)(72 159)(73 160)(74 161)(75 162)(76 163)(77 164)(78 165)(79 166)(80 167)(81 168)(82 169)(83 170)(84 171)(85 172)(86 173)(87 174)(88 175)(89 176)(90 177)(91 178)(92 179)(93 180)(94 181)(95 182)(96 183)(97 184)(98 185)(99 186)(100 187)(101 188)(102 189)(103 190)(104 191)(105 192)(106 193)(107 194)(108 195)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216)
(1 108)(2 107)(3 106)(4 105)(5 104)(6 103)(7 102)(8 101)(9 100)(10 99)(11 98)(12 97)(13 96)(14 95)(15 94)(16 93)(17 92)(18 91)(19 90)(20 89)(21 88)(22 87)(23 86)(24 85)(25 84)(26 83)(27 82)(28 81)(29 80)(30 79)(31 78)(32 77)(33 76)(34 75)(35 74)(36 73)(37 72)(38 71)(39 70)(40 69)(41 68)(42 67)(43 66)(44 65)(45 64)(46 63)(47 62)(48 61)(49 60)(50 59)(51 58)(52 57)(53 56)(54 55)(109 174)(110 173)(111 172)(112 171)(113 170)(114 169)(115 168)(116 167)(117 166)(118 165)(119 164)(120 163)(121 162)(122 161)(123 160)(124 159)(125 158)(126 157)(127 156)(128 155)(129 154)(130 153)(131 152)(132 151)(133 150)(134 149)(135 148)(136 147)(137 146)(138 145)(139 144)(140 143)(141 142)(175 216)(176 215)(177 214)(178 213)(179 212)(180 211)(181 210)(182 209)(183 208)(184 207)(185 206)(186 205)(187 204)(188 203)(189 202)(190 201)(191 200)(192 199)(193 198)(194 197)(195 196)

G:=sub<Sym(216)| (1,196)(2,197)(3,198)(4,199)(5,200)(6,201)(7,202)(8,203)(9,204)(10,205)(11,206)(12,207)(13,208)(14,209)(15,210)(16,211)(17,212)(18,213)(19,214)(20,215)(21,216)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,138)(52,139)(53,140)(54,141)(55,142)(56,143)(57,144)(58,145)(59,146)(60,147)(61,148)(62,149)(63,150)(64,151)(65,152)(66,153)(67,154)(68,155)(69,156)(70,157)(71,158)(72,159)(73,160)(74,161)(75,162)(76,163)(77,164)(78,165)(79,166)(80,167)(81,168)(82,169)(83,170)(84,171)(85,172)(86,173)(87,174)(88,175)(89,176)(90,177)(91,178)(92,179)(93,180)(94,181)(95,182)(96,183)(97,184)(98,185)(99,186)(100,187)(101,188)(102,189)(103,190)(104,191)(105,192)(106,193)(107,194)(108,195), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216), (1,108)(2,107)(3,106)(4,105)(5,104)(6,103)(7,102)(8,101)(9,100)(10,99)(11,98)(12,97)(13,96)(14,95)(15,94)(16,93)(17,92)(18,91)(19,90)(20,89)(21,88)(22,87)(23,86)(24,85)(25,84)(26,83)(27,82)(28,81)(29,80)(30,79)(31,78)(32,77)(33,76)(34,75)(35,74)(36,73)(37,72)(38,71)(39,70)(40,69)(41,68)(42,67)(43,66)(44,65)(45,64)(46,63)(47,62)(48,61)(49,60)(50,59)(51,58)(52,57)(53,56)(54,55)(109,174)(110,173)(111,172)(112,171)(113,170)(114,169)(115,168)(116,167)(117,166)(118,165)(119,164)(120,163)(121,162)(122,161)(123,160)(124,159)(125,158)(126,157)(127,156)(128,155)(129,154)(130,153)(131,152)(132,151)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,143)(141,142)(175,216)(176,215)(177,214)(178,213)(179,212)(180,211)(181,210)(182,209)(183,208)(184,207)(185,206)(186,205)(187,204)(188,203)(189,202)(190,201)(191,200)(192,199)(193,198)(194,197)(195,196)>;

G:=Group( (1,196)(2,197)(3,198)(4,199)(5,200)(6,201)(7,202)(8,203)(9,204)(10,205)(11,206)(12,207)(13,208)(14,209)(15,210)(16,211)(17,212)(18,213)(19,214)(20,215)(21,216)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,138)(52,139)(53,140)(54,141)(55,142)(56,143)(57,144)(58,145)(59,146)(60,147)(61,148)(62,149)(63,150)(64,151)(65,152)(66,153)(67,154)(68,155)(69,156)(70,157)(71,158)(72,159)(73,160)(74,161)(75,162)(76,163)(77,164)(78,165)(79,166)(80,167)(81,168)(82,169)(83,170)(84,171)(85,172)(86,173)(87,174)(88,175)(89,176)(90,177)(91,178)(92,179)(93,180)(94,181)(95,182)(96,183)(97,184)(98,185)(99,186)(100,187)(101,188)(102,189)(103,190)(104,191)(105,192)(106,193)(107,194)(108,195), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216), (1,108)(2,107)(3,106)(4,105)(5,104)(6,103)(7,102)(8,101)(9,100)(10,99)(11,98)(12,97)(13,96)(14,95)(15,94)(16,93)(17,92)(18,91)(19,90)(20,89)(21,88)(22,87)(23,86)(24,85)(25,84)(26,83)(27,82)(28,81)(29,80)(30,79)(31,78)(32,77)(33,76)(34,75)(35,74)(36,73)(37,72)(38,71)(39,70)(40,69)(41,68)(42,67)(43,66)(44,65)(45,64)(46,63)(47,62)(48,61)(49,60)(50,59)(51,58)(52,57)(53,56)(54,55)(109,174)(110,173)(111,172)(112,171)(113,170)(114,169)(115,168)(116,167)(117,166)(118,165)(119,164)(120,163)(121,162)(122,161)(123,160)(124,159)(125,158)(126,157)(127,156)(128,155)(129,154)(130,153)(131,152)(132,151)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,143)(141,142)(175,216)(176,215)(177,214)(178,213)(179,212)(180,211)(181,210)(182,209)(183,208)(184,207)(185,206)(186,205)(187,204)(188,203)(189,202)(190,201)(191,200)(192,199)(193,198)(194,197)(195,196) );

G=PermutationGroup([[(1,196),(2,197),(3,198),(4,199),(5,200),(6,201),(7,202),(8,203),(9,204),(10,205),(11,206),(12,207),(13,208),(14,209),(15,210),(16,211),(17,212),(18,213),(19,214),(20,215),(21,216),(22,109),(23,110),(24,111),(25,112),(26,113),(27,114),(28,115),(29,116),(30,117),(31,118),(32,119),(33,120),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,128),(42,129),(43,130),(44,131),(45,132),(46,133),(47,134),(48,135),(49,136),(50,137),(51,138),(52,139),(53,140),(54,141),(55,142),(56,143),(57,144),(58,145),(59,146),(60,147),(61,148),(62,149),(63,150),(64,151),(65,152),(66,153),(67,154),(68,155),(69,156),(70,157),(71,158),(72,159),(73,160),(74,161),(75,162),(76,163),(77,164),(78,165),(79,166),(80,167),(81,168),(82,169),(83,170),(84,171),(85,172),(86,173),(87,174),(88,175),(89,176),(90,177),(91,178),(92,179),(93,180),(94,181),(95,182),(96,183),(97,184),(98,185),(99,186),(100,187),(101,188),(102,189),(103,190),(104,191),(105,192),(106,193),(107,194),(108,195)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216)], [(1,108),(2,107),(3,106),(4,105),(5,104),(6,103),(7,102),(8,101),(9,100),(10,99),(11,98),(12,97),(13,96),(14,95),(15,94),(16,93),(17,92),(18,91),(19,90),(20,89),(21,88),(22,87),(23,86),(24,85),(25,84),(26,83),(27,82),(28,81),(29,80),(30,79),(31,78),(32,77),(33,76),(34,75),(35,74),(36,73),(37,72),(38,71),(39,70),(40,69),(41,68),(42,67),(43,66),(44,65),(45,64),(46,63),(47,62),(48,61),(49,60),(50,59),(51,58),(52,57),(53,56),(54,55),(109,174),(110,173),(111,172),(112,171),(113,170),(114,169),(115,168),(116,167),(117,166),(118,165),(119,164),(120,163),(121,162),(122,161),(123,160),(124,159),(125,158),(126,157),(127,156),(128,155),(129,154),(130,153),(131,152),(132,151),(133,150),(134,149),(135,148),(136,147),(137,146),(138,145),(139,144),(140,143),(141,142),(175,216),(176,215),(177,214),(178,213),(179,212),(180,211),(181,210),(182,209),(183,208),(184,207),(185,206),(186,205),(187,204),(188,203),(189,202),(190,201),(191,200),(192,199),(193,198),(194,197),(195,196)]])

114 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C9A9B9C12A12B12C12D18A···18I27A···27I36A···36L54A···54AA108A···108AJ
order122222223446669991212121218···1827···2736···3654···54108···108
size11115454545422222222222222···22···22···22···22···2

114 irreducible representations

dim11112222222222222
type+++++++++++++++++
imageC1C2C2C2S3D4D6D6D9D12D18D18D27D36D54D54D108
kernelC2×D108D108C2×C108C22×D27C2×C36C54C36C2×C18C2×C12C18C12C2×C6C2×C4C6C4C22C2
# reps14121221346391218936

Matrix representation of C2×D108 in GL3(𝔽109) generated by

10800
01080
00108
,
10800
010341
06862
,
100
06635
07843
G:=sub<GL(3,GF(109))| [108,0,0,0,108,0,0,0,108],[108,0,0,0,103,68,0,41,62],[1,0,0,0,66,78,0,35,43] >;

C2×D108 in GAP, Magma, Sage, TeX

C_2\times D_{108}
% in TeX

G:=Group("C2xD108");
// GroupNames label

G:=SmallGroup(432,45);
// by ID

G=gap.SmallGroup(432,45);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,254,58,2804,557,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^2=b^108=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽