Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C3×C6

Direct product G=N×Q with N=C4×S3 and Q=C3×C6
dρLabelID
S3×C6×C12144S3xC6xC12432,701

Semidirect products G=N:Q with N=C4×S3 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1(C3×C6) = S3×D4×C32φ: C3×C6/C32C2 ⊆ Out C4×S372(C4xS3):1(C3xC6)432,704
(C4×S3)⋊2(C3×C6) = C32×D42S3φ: C3×C6/C32C2 ⊆ Out C4×S372(C4xS3):2(C3xC6)432,705
(C4×S3)⋊3(C3×C6) = C32×Q83S3φ: C3×C6/C32C2 ⊆ Out C4×S3144(C4xS3):3(C3xC6)432,707
(C4×S3)⋊4(C3×C6) = C32×C4○D12φ: C3×C6/C32C2 ⊆ Out C4×S372(C4xS3):4(C3xC6)432,703

Non-split extensions G=N.Q with N=C4×S3 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
(C4×S3).1(C3×C6) = S3×Q8×C32φ: C3×C6/C32C2 ⊆ Out C4×S3144(C4xS3).1(C3xC6)432,706
(C4×S3).2(C3×C6) = C32×C8⋊S3φ: C3×C6/C32C2 ⊆ Out C4×S3144(C4xS3).2(C3xC6)432,465
(C4×S3).3(C3×C6) = S3×C3×C24φ: trivial image144(C4xS3).3(C3xC6)432,464

׿
×
𝔽