Copied to
clipboard

G = S3×C6×C12order 432 = 24·33

Direct product of C6×C12 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3×C6×C12, C123C62, D6.4C62, Dic33C62, C62.168D6, C61(C6×C12), (C6×C12)⋊16C6, C2.1(S3×C62), C6.2(C2×C62), (C6×Dic3)⋊11C6, (S3×C62).6C2, (C2×C6).20C62, C62.71(C2×C6), C3316(C22×C4), C328(C22×C12), (C32×C12)⋊16C22, (C32×C6).76C23, (C3×C62).57C22, (C32×Dic3)⋊24C22, C31(C2×C6×C12), (C3×C6×C12)⋊11C2, C6.74(S3×C2×C6), (C3×C6)⋊7(C2×C12), (C2×C12)⋊5(C3×C6), (S3×C2×C6).11C6, (C3×C12)⋊13(C2×C6), C22.9(S3×C3×C6), (C2×C6).96(S3×C6), (Dic3×C3×C6)⋊17C2, (S3×C6).22(C2×C6), (C32×C6)⋊10(C2×C4), (C2×Dic3)⋊5(C3×C6), (S3×C3×C6).33C22, (C3×Dic3)⋊10(C2×C6), (C22×S3).2(C3×C6), (C3×C6).50(C22×C6), (C3×C6).195(C22×S3), SmallGroup(432,701)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C6×C12
C1C3C6C3×C6C32×C6S3×C3×C6S3×C62 — S3×C6×C12
C3 — S3×C6×C12
C1C6×C12

Generators and relations for S3×C6×C12
 G = < a,b,c,d | a6=b12=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 680 in 388 conjugacy classes, 210 normal (22 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C23, C32, C32, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C6, C22×C4, C3×S3, C3×C6, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C2×C12, C2×C12, C22×S3, C22×C6, C33, C3×Dic3, C3×C12, C3×C12, S3×C6, C62, C62, C62, S3×C2×C4, C22×C12, S3×C32, C32×C6, C32×C6, S3×C12, C6×Dic3, C6×C12, C6×C12, C6×C12, S3×C2×C6, C2×C62, C32×Dic3, C32×C12, S3×C3×C6, C3×C62, S3×C2×C12, C2×C6×C12, S3×C3×C12, Dic3×C3×C6, C3×C6×C12, S3×C62, S3×C6×C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C23, C32, C12, D6, C2×C6, C22×C4, C3×S3, C3×C6, C4×S3, C2×C12, C22×S3, C22×C6, C3×C12, S3×C6, C62, S3×C2×C4, C22×C12, S3×C32, S3×C12, C6×C12, S3×C2×C6, C2×C62, S3×C3×C6, S3×C2×C12, C2×C6×C12, S3×C3×C12, S3×C62, S3×C6×C12

Smallest permutation representation of S3×C6×C12
On 144 points
Generators in S144
(1 114 143 50 77 86)(2 115 144 51 78 87)(3 116 133 52 79 88)(4 117 134 53 80 89)(5 118 135 54 81 90)(6 119 136 55 82 91)(7 120 137 56 83 92)(8 109 138 57 84 93)(9 110 139 58 73 94)(10 111 140 59 74 95)(11 112 141 60 75 96)(12 113 142 49 76 85)(13 36 42 124 97 70)(14 25 43 125 98 71)(15 26 44 126 99 72)(16 27 45 127 100 61)(17 28 46 128 101 62)(18 29 47 129 102 63)(19 30 48 130 103 64)(20 31 37 131 104 65)(21 32 38 132 105 66)(22 33 39 121 106 67)(23 34 40 122 107 68)(24 35 41 123 108 69)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)(49 53 57)(50 54 58)(51 55 59)(52 56 60)(61 69 65)(62 70 66)(63 71 67)(64 72 68)(73 77 81)(74 78 82)(75 79 83)(76 80 84)(85 89 93)(86 90 94)(87 91 95)(88 92 96)(97 105 101)(98 106 102)(99 107 103)(100 108 104)(109 113 117)(110 114 118)(111 115 119)(112 116 120)(121 129 125)(122 130 126)(123 131 127)(124 132 128)(133 137 141)(134 138 142)(135 139 143)(136 140 144)
(1 24)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(25 116)(26 117)(27 118)(28 119)(29 120)(30 109)(31 110)(32 111)(33 112)(34 113)(35 114)(36 115)(37 139)(38 140)(39 141)(40 142)(41 143)(42 144)(43 133)(44 134)(45 135)(46 136)(47 137)(48 138)(49 122)(50 123)(51 124)(52 125)(53 126)(54 127)(55 128)(56 129)(57 130)(58 131)(59 132)(60 121)(61 90)(62 91)(63 92)(64 93)(65 94)(66 95)(67 96)(68 85)(69 86)(70 87)(71 88)(72 89)(73 104)(74 105)(75 106)(76 107)(77 108)(78 97)(79 98)(80 99)(81 100)(82 101)(83 102)(84 103)

G:=sub<Sym(144)| (1,114,143,50,77,86)(2,115,144,51,78,87)(3,116,133,52,79,88)(4,117,134,53,80,89)(5,118,135,54,81,90)(6,119,136,55,82,91)(7,120,137,56,83,92)(8,109,138,57,84,93)(9,110,139,58,73,94)(10,111,140,59,74,95)(11,112,141,60,75,96)(12,113,142,49,76,85)(13,36,42,124,97,70)(14,25,43,125,98,71)(15,26,44,126,99,72)(16,27,45,127,100,61)(17,28,46,128,101,62)(18,29,47,129,102,63)(19,30,48,130,103,64)(20,31,37,131,104,65)(21,32,38,132,105,66)(22,33,39,121,106,67)(23,34,40,122,107,68)(24,35,41,123,108,69), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,89,93)(86,90,94)(87,91,95)(88,92,96)(97,105,101)(98,106,102)(99,107,103)(100,108,104)(109,113,117)(110,114,118)(111,115,119)(112,116,120)(121,129,125)(122,130,126)(123,131,127)(124,132,128)(133,137,141)(134,138,142)(135,139,143)(136,140,144), (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,116)(26,117)(27,118)(28,119)(29,120)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,139)(38,140)(39,141)(40,142)(41,143)(42,144)(43,133)(44,134)(45,135)(46,136)(47,137)(48,138)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,121)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,85)(69,86)(70,87)(71,88)(72,89)(73,104)(74,105)(75,106)(76,107)(77,108)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103)>;

G:=Group( (1,114,143,50,77,86)(2,115,144,51,78,87)(3,116,133,52,79,88)(4,117,134,53,80,89)(5,118,135,54,81,90)(6,119,136,55,82,91)(7,120,137,56,83,92)(8,109,138,57,84,93)(9,110,139,58,73,94)(10,111,140,59,74,95)(11,112,141,60,75,96)(12,113,142,49,76,85)(13,36,42,124,97,70)(14,25,43,125,98,71)(15,26,44,126,99,72)(16,27,45,127,100,61)(17,28,46,128,101,62)(18,29,47,129,102,63)(19,30,48,130,103,64)(20,31,37,131,104,65)(21,32,38,132,105,66)(22,33,39,121,106,67)(23,34,40,122,107,68)(24,35,41,123,108,69), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,89,93)(86,90,94)(87,91,95)(88,92,96)(97,105,101)(98,106,102)(99,107,103)(100,108,104)(109,113,117)(110,114,118)(111,115,119)(112,116,120)(121,129,125)(122,130,126)(123,131,127)(124,132,128)(133,137,141)(134,138,142)(135,139,143)(136,140,144), (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,116)(26,117)(27,118)(28,119)(29,120)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,139)(38,140)(39,141)(40,142)(41,143)(42,144)(43,133)(44,134)(45,135)(46,136)(47,137)(48,138)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,121)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,85)(69,86)(70,87)(71,88)(72,89)(73,104)(74,105)(75,106)(76,107)(77,108)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103) );

G=PermutationGroup([[(1,114,143,50,77,86),(2,115,144,51,78,87),(3,116,133,52,79,88),(4,117,134,53,80,89),(5,118,135,54,81,90),(6,119,136,55,82,91),(7,120,137,56,83,92),(8,109,138,57,84,93),(9,110,139,58,73,94),(10,111,140,59,74,95),(11,112,141,60,75,96),(12,113,142,49,76,85),(13,36,42,124,97,70),(14,25,43,125,98,71),(15,26,44,126,99,72),(16,27,45,127,100,61),(17,28,46,128,101,62),(18,29,47,129,102,63),(19,30,48,130,103,64),(20,31,37,131,104,65),(21,32,38,132,105,66),(22,33,39,121,106,67),(23,34,40,122,107,68),(24,35,41,123,108,69)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44),(49,53,57),(50,54,58),(51,55,59),(52,56,60),(61,69,65),(62,70,66),(63,71,67),(64,72,68),(73,77,81),(74,78,82),(75,79,83),(76,80,84),(85,89,93),(86,90,94),(87,91,95),(88,92,96),(97,105,101),(98,106,102),(99,107,103),(100,108,104),(109,113,117),(110,114,118),(111,115,119),(112,116,120),(121,129,125),(122,130,126),(123,131,127),(124,132,128),(133,137,141),(134,138,142),(135,139,143),(136,140,144)], [(1,24),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(25,116),(26,117),(27,118),(28,119),(29,120),(30,109),(31,110),(32,111),(33,112),(34,113),(35,114),(36,115),(37,139),(38,140),(39,141),(40,142),(41,143),(42,144),(43,133),(44,134),(45,135),(46,136),(47,137),(48,138),(49,122),(50,123),(51,124),(52,125),(53,126),(54,127),(55,128),(56,129),(57,130),(58,131),(59,132),(60,121),(61,90),(62,91),(63,92),(64,93),(65,94),(66,95),(67,96),(68,85),(69,86),(70,87),(71,88),(72,89),(73,104),(74,105),(75,106),(76,107),(77,108),(78,97),(79,98),(80,99),(81,100),(82,101),(83,102),(84,103)]])

216 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3H3I···3Q4A4B4C4D4E4F4G4H6A···6X6Y···6AY6AZ···6CE12A···12AF12AG···12BP12BQ···12CV
order122222223···33···3444444446···66···66···612···1212···1212···12
size111133331···12···2111133331···12···23···31···12···23···3

216 irreducible representations

dim11111111111122222222
type++++++++
imageC1C2C2C2C2C3C4C6C6C6C6C12S3D6D6C3×S3C4×S3S3×C6S3×C6S3×C12
kernelS3×C6×C12S3×C3×C12Dic3×C3×C6C3×C6×C12S3×C62S3×C2×C12S3×C3×C6S3×C12C6×Dic3C6×C12S3×C2×C6S3×C6C6×C12C3×C12C62C2×C12C3×C6C12C2×C6C6
# reps141118832888641218416832

Matrix representation of S3×C6×C12 in GL4(𝔽13) generated by

3000
0400
00100
00010
,
10000
0300
0070
0007
,
1000
0100
0094
0003
,
1000
01200
00120
0081
G:=sub<GL(4,GF(13))| [3,0,0,0,0,4,0,0,0,0,10,0,0,0,0,10],[10,0,0,0,0,3,0,0,0,0,7,0,0,0,0,7],[1,0,0,0,0,1,0,0,0,0,9,0,0,0,4,3],[1,0,0,0,0,12,0,0,0,0,12,8,0,0,0,1] >;

S3×C6×C12 in GAP, Magma, Sage, TeX

S_3\times C_6\times C_{12}
% in TeX

G:=Group("S3xC6xC12");
// GroupNames label

G:=SmallGroup(432,701);
// by ID

G=gap.SmallGroup(432,701);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-3,394,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^12=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽