Extensions 1→N→G→Q→1 with N=C2×C4 and Q=He3⋊C2

Direct product G=N×Q with N=C2×C4 and Q=He3⋊C2
dρLabelID
C2×C4×He3⋊C272C2xC4xHe3:C2432,385

Semidirect products G=N:Q with N=C2×C4 and Q=He3⋊C2
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(He3⋊C2) = C62.31D6φ: He3⋊C2/He3C2 ⊆ Aut C2×C472(C2xC4):1(He3:C2)432,189
(C2×C4)⋊2(He3⋊C2) = C2×He35D4φ: He3⋊C2/He3C2 ⊆ Aut C2×C472(C2xC4):2(He3:C2)432,386
(C2×C4)⋊3(He3⋊C2) = C62.47D6φ: He3⋊C2/He3C2 ⊆ Aut C2×C4726(C2xC4):3(He3:C2)432,387

Non-split extensions G=N.Q with N=C2×C4 and Q=He3⋊C2
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(He3⋊C2) = C62.29D6φ: He3⋊C2/He3C2 ⊆ Aut C2×C4144(C2xC4).1(He3:C2)432,187
(C2×C4).2(He3⋊C2) = He38M4(2)φ: He3⋊C2/He3C2 ⊆ Aut C2×C4726(C2xC4).2(He3:C2)432,185
(C2×C4).3(He3⋊C2) = C62.30D6φ: He3⋊C2/He3C2 ⊆ Aut C2×C4144(C2xC4).3(He3:C2)432,188
(C2×C4).4(He3⋊C2) = C2×He34Q8φ: He3⋊C2/He3C2 ⊆ Aut C2×C4144(C2xC4).4(He3:C2)432,384
(C2×C4).5(He3⋊C2) = C2×He34C8central extension (φ=1)144(C2xC4).5(He3:C2)432,184
(C2×C4).6(He3⋊C2) = C4×He33C4central extension (φ=1)144(C2xC4).6(He3:C2)432,186

׿
×
𝔽