Copied to
clipboard

G = C4×He33C4order 432 = 24·33

Direct product of C4 and He33C4

direct product, non-abelian, supersoluble, monomial

Aliases: C4×He33C4, He34C42, C62.28D6, (C4×He3)⋊6C4, (C6×C12).21S3, (C3×C12)⋊4Dic3, C323(C4×Dic3), C12.14(C3⋊Dic3), (C22×He3).21C22, C6.22(C4×C3⋊S3), (C3×C6).22(C4×S3), (C2×C4×He3).13C2, C3.2(C4×C3⋊Dic3), C6.18(C2×C3⋊Dic3), C2.2(C4×He3⋊C2), C2.2(C2×He33C4), (C2×C12).29(C3⋊S3), (C2×He3).23(C2×C4), (C3×C6).18(C2×Dic3), (C2×He33C4).10C2, (C2×C4).6(He3⋊C2), C22.3(C2×He3⋊C2), (C2×C6).51(C2×C3⋊S3), SmallGroup(432,186)

Series: Derived Chief Lower central Upper central

C1C3He3 — C4×He33C4
C1C3C32He3C2×He3C22×He3C2×He33C4 — C4×He33C4
He3 — C4×He33C4
C1C2×C12

Generators and relations for C4×He33C4
 G = < a,b,c,d,e | a4=b3=c3=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=b-1, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 453 in 165 conjugacy classes, 63 normal (13 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C6, C2×C4, C2×C4, C32, Dic3, C12, C12, C2×C6, C2×C6, C42, C3×C6, C2×Dic3, C2×C12, C2×C12, He3, C3×Dic3, C3×C12, C62, C4×Dic3, C4×C12, C2×He3, C2×He3, C6×Dic3, C6×C12, He33C4, C4×He3, C22×He3, Dic3×C12, C2×He33C4, C2×C4×He3, C4×He33C4
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, C3⋊S3, C4×S3, C2×Dic3, C3⋊Dic3, C2×C3⋊S3, C4×Dic3, He3⋊C2, C4×C3⋊S3, C2×C3⋊Dic3, He33C4, C2×He3⋊C2, C4×C3⋊Dic3, C4×He3⋊C2, C2×He33C4, C4×He33C4

Smallest permutation representation of C4×He33C4
On 144 points
Generators in S144
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(5 63 66)(6 64 67)(7 61 68)(8 62 65)(9 141 130)(10 142 131)(11 143 132)(12 144 129)(17 32 50)(18 29 51)(19 30 52)(20 31 49)(41 56 83)(42 53 84)(43 54 81)(44 55 82)(45 128 80)(46 125 77)(47 126 78)(48 127 79)(57 72 109)(58 69 110)(59 70 111)(60 71 112)(89 122 104)(90 123 101)(91 124 102)(92 121 103)(117 140 133)(118 137 134)(119 138 135)(120 139 136)
(1 26 15)(2 27 16)(3 28 13)(4 25 14)(5 66 63)(6 67 64)(7 68 61)(8 65 62)(9 130 141)(10 131 142)(11 132 143)(12 129 144)(17 32 50)(18 29 51)(19 30 52)(20 31 49)(21 36 73)(22 33 74)(23 34 75)(24 35 76)(37 95 106)(38 96 107)(39 93 108)(40 94 105)(41 83 56)(42 84 53)(43 81 54)(44 82 55)(45 128 80)(46 125 77)(47 126 78)(48 127 79)(57 72 109)(58 69 110)(59 70 111)(60 71 112)(85 116 100)(86 113 97)(87 114 98)(88 115 99)(89 104 122)(90 101 123)(91 102 124)(92 103 121)(117 140 133)(118 137 134)(119 138 135)(120 139 136)
(1 62 29)(2 63 30)(3 64 31)(4 61 32)(5 52 27)(6 49 28)(7 50 25)(8 51 26)(9 128 105)(10 125 106)(11 126 107)(12 127 108)(13 67 20)(14 68 17)(15 65 18)(16 66 19)(21 82 72)(22 83 69)(23 84 70)(24 81 71)(33 56 110)(34 53 111)(35 54 112)(36 55 109)(37 131 77)(38 132 78)(39 129 79)(40 130 80)(41 58 74)(42 59 75)(43 60 76)(44 57 73)(45 94 141)(46 95 142)(47 96 143)(48 93 144)(85 92 139)(86 89 140)(87 90 137)(88 91 138)(97 122 117)(98 123 118)(99 124 119)(100 121 120)(101 134 114)(102 135 115)(103 136 116)(104 133 113)
(1 39 76 115)(2 40 73 116)(3 37 74 113)(4 38 75 114)(5 45 82 120)(6 46 83 117)(7 47 84 118)(8 48 81 119)(9 109 92 19)(10 110 89 20)(11 111 90 17)(12 112 91 18)(13 106 33 86)(14 107 34 87)(15 108 35 88)(16 105 36 85)(21 100 27 94)(22 97 28 95)(23 98 25 96)(24 99 26 93)(29 129 60 102)(30 130 57 103)(31 131 58 104)(32 132 59 101)(41 133 64 77)(42 134 61 78)(43 135 62 79)(44 136 63 80)(49 142 69 122)(50 143 70 123)(51 144 71 124)(52 141 72 121)(53 137 68 126)(54 138 65 127)(55 139 66 128)(56 140 67 125)

G:=sub<Sym(144)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (5,63,66)(6,64,67)(7,61,68)(8,62,65)(9,141,130)(10,142,131)(11,143,132)(12,144,129)(17,32,50)(18,29,51)(19,30,52)(20,31,49)(41,56,83)(42,53,84)(43,54,81)(44,55,82)(45,128,80)(46,125,77)(47,126,78)(48,127,79)(57,72,109)(58,69,110)(59,70,111)(60,71,112)(89,122,104)(90,123,101)(91,124,102)(92,121,103)(117,140,133)(118,137,134)(119,138,135)(120,139,136), (1,26,15)(2,27,16)(3,28,13)(4,25,14)(5,66,63)(6,67,64)(7,68,61)(8,65,62)(9,130,141)(10,131,142)(11,132,143)(12,129,144)(17,32,50)(18,29,51)(19,30,52)(20,31,49)(21,36,73)(22,33,74)(23,34,75)(24,35,76)(37,95,106)(38,96,107)(39,93,108)(40,94,105)(41,83,56)(42,84,53)(43,81,54)(44,82,55)(45,128,80)(46,125,77)(47,126,78)(48,127,79)(57,72,109)(58,69,110)(59,70,111)(60,71,112)(85,116,100)(86,113,97)(87,114,98)(88,115,99)(89,104,122)(90,101,123)(91,102,124)(92,103,121)(117,140,133)(118,137,134)(119,138,135)(120,139,136), (1,62,29)(2,63,30)(3,64,31)(4,61,32)(5,52,27)(6,49,28)(7,50,25)(8,51,26)(9,128,105)(10,125,106)(11,126,107)(12,127,108)(13,67,20)(14,68,17)(15,65,18)(16,66,19)(21,82,72)(22,83,69)(23,84,70)(24,81,71)(33,56,110)(34,53,111)(35,54,112)(36,55,109)(37,131,77)(38,132,78)(39,129,79)(40,130,80)(41,58,74)(42,59,75)(43,60,76)(44,57,73)(45,94,141)(46,95,142)(47,96,143)(48,93,144)(85,92,139)(86,89,140)(87,90,137)(88,91,138)(97,122,117)(98,123,118)(99,124,119)(100,121,120)(101,134,114)(102,135,115)(103,136,116)(104,133,113), (1,39,76,115)(2,40,73,116)(3,37,74,113)(4,38,75,114)(5,45,82,120)(6,46,83,117)(7,47,84,118)(8,48,81,119)(9,109,92,19)(10,110,89,20)(11,111,90,17)(12,112,91,18)(13,106,33,86)(14,107,34,87)(15,108,35,88)(16,105,36,85)(21,100,27,94)(22,97,28,95)(23,98,25,96)(24,99,26,93)(29,129,60,102)(30,130,57,103)(31,131,58,104)(32,132,59,101)(41,133,64,77)(42,134,61,78)(43,135,62,79)(44,136,63,80)(49,142,69,122)(50,143,70,123)(51,144,71,124)(52,141,72,121)(53,137,68,126)(54,138,65,127)(55,139,66,128)(56,140,67,125)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (5,63,66)(6,64,67)(7,61,68)(8,62,65)(9,141,130)(10,142,131)(11,143,132)(12,144,129)(17,32,50)(18,29,51)(19,30,52)(20,31,49)(41,56,83)(42,53,84)(43,54,81)(44,55,82)(45,128,80)(46,125,77)(47,126,78)(48,127,79)(57,72,109)(58,69,110)(59,70,111)(60,71,112)(89,122,104)(90,123,101)(91,124,102)(92,121,103)(117,140,133)(118,137,134)(119,138,135)(120,139,136), (1,26,15)(2,27,16)(3,28,13)(4,25,14)(5,66,63)(6,67,64)(7,68,61)(8,65,62)(9,130,141)(10,131,142)(11,132,143)(12,129,144)(17,32,50)(18,29,51)(19,30,52)(20,31,49)(21,36,73)(22,33,74)(23,34,75)(24,35,76)(37,95,106)(38,96,107)(39,93,108)(40,94,105)(41,83,56)(42,84,53)(43,81,54)(44,82,55)(45,128,80)(46,125,77)(47,126,78)(48,127,79)(57,72,109)(58,69,110)(59,70,111)(60,71,112)(85,116,100)(86,113,97)(87,114,98)(88,115,99)(89,104,122)(90,101,123)(91,102,124)(92,103,121)(117,140,133)(118,137,134)(119,138,135)(120,139,136), (1,62,29)(2,63,30)(3,64,31)(4,61,32)(5,52,27)(6,49,28)(7,50,25)(8,51,26)(9,128,105)(10,125,106)(11,126,107)(12,127,108)(13,67,20)(14,68,17)(15,65,18)(16,66,19)(21,82,72)(22,83,69)(23,84,70)(24,81,71)(33,56,110)(34,53,111)(35,54,112)(36,55,109)(37,131,77)(38,132,78)(39,129,79)(40,130,80)(41,58,74)(42,59,75)(43,60,76)(44,57,73)(45,94,141)(46,95,142)(47,96,143)(48,93,144)(85,92,139)(86,89,140)(87,90,137)(88,91,138)(97,122,117)(98,123,118)(99,124,119)(100,121,120)(101,134,114)(102,135,115)(103,136,116)(104,133,113), (1,39,76,115)(2,40,73,116)(3,37,74,113)(4,38,75,114)(5,45,82,120)(6,46,83,117)(7,47,84,118)(8,48,81,119)(9,109,92,19)(10,110,89,20)(11,111,90,17)(12,112,91,18)(13,106,33,86)(14,107,34,87)(15,108,35,88)(16,105,36,85)(21,100,27,94)(22,97,28,95)(23,98,25,96)(24,99,26,93)(29,129,60,102)(30,130,57,103)(31,131,58,104)(32,132,59,101)(41,133,64,77)(42,134,61,78)(43,135,62,79)(44,136,63,80)(49,142,69,122)(50,143,70,123)(51,144,71,124)(52,141,72,121)(53,137,68,126)(54,138,65,127)(55,139,66,128)(56,140,67,125) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(5,63,66),(6,64,67),(7,61,68),(8,62,65),(9,141,130),(10,142,131),(11,143,132),(12,144,129),(17,32,50),(18,29,51),(19,30,52),(20,31,49),(41,56,83),(42,53,84),(43,54,81),(44,55,82),(45,128,80),(46,125,77),(47,126,78),(48,127,79),(57,72,109),(58,69,110),(59,70,111),(60,71,112),(89,122,104),(90,123,101),(91,124,102),(92,121,103),(117,140,133),(118,137,134),(119,138,135),(120,139,136)], [(1,26,15),(2,27,16),(3,28,13),(4,25,14),(5,66,63),(6,67,64),(7,68,61),(8,65,62),(9,130,141),(10,131,142),(11,132,143),(12,129,144),(17,32,50),(18,29,51),(19,30,52),(20,31,49),(21,36,73),(22,33,74),(23,34,75),(24,35,76),(37,95,106),(38,96,107),(39,93,108),(40,94,105),(41,83,56),(42,84,53),(43,81,54),(44,82,55),(45,128,80),(46,125,77),(47,126,78),(48,127,79),(57,72,109),(58,69,110),(59,70,111),(60,71,112),(85,116,100),(86,113,97),(87,114,98),(88,115,99),(89,104,122),(90,101,123),(91,102,124),(92,103,121),(117,140,133),(118,137,134),(119,138,135),(120,139,136)], [(1,62,29),(2,63,30),(3,64,31),(4,61,32),(5,52,27),(6,49,28),(7,50,25),(8,51,26),(9,128,105),(10,125,106),(11,126,107),(12,127,108),(13,67,20),(14,68,17),(15,65,18),(16,66,19),(21,82,72),(22,83,69),(23,84,70),(24,81,71),(33,56,110),(34,53,111),(35,54,112),(36,55,109),(37,131,77),(38,132,78),(39,129,79),(40,130,80),(41,58,74),(42,59,75),(43,60,76),(44,57,73),(45,94,141),(46,95,142),(47,96,143),(48,93,144),(85,92,139),(86,89,140),(87,90,137),(88,91,138),(97,122,117),(98,123,118),(99,124,119),(100,121,120),(101,134,114),(102,135,115),(103,136,116),(104,133,113)], [(1,39,76,115),(2,40,73,116),(3,37,74,113),(4,38,75,114),(5,45,82,120),(6,46,83,117),(7,47,84,118),(8,48,81,119),(9,109,92,19),(10,110,89,20),(11,111,90,17),(12,112,91,18),(13,106,33,86),(14,107,34,87),(15,108,35,88),(16,105,36,85),(21,100,27,94),(22,97,28,95),(23,98,25,96),(24,99,26,93),(29,129,60,102),(30,130,57,103),(31,131,58,104),(32,132,59,101),(41,133,64,77),(42,134,61,78),(43,135,62,79),(44,136,63,80),(49,142,69,122),(50,143,70,123),(51,144,71,124),(52,141,72,121),(53,137,68,126),(54,138,65,127),(55,139,66,128),(56,140,67,125)]])

80 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F4A4B4C4D4E···4L6A···6F6G···6R12A···12H12I···12X12Y···12AN
order122233333344444···46···66···612···1212···1212···12
size111111666611119···91···16···61···16···69···9

80 irreducible representations

dim1111122223333
type++++-+
imageC1C2C2C4C4S3Dic3D6C4×S3He3⋊C2He33C4C2×He3⋊C2C4×He3⋊C2
kernelC4×He33C4C2×He33C4C2×C4×He3He33C4C4×He3C6×C12C3×C12C62C3×C6C2×C4C4C22C2
# reps121844841648416

Matrix representation of C4×He33C4 in GL5(𝔽13)

50000
05000
00500
00050
00005
,
012000
112000
00100
00090
00003
,
10000
01000
00900
00090
00009
,
10000
01000
00010
00001
00100
,
112000
012000
00800
00008
00080

G:=sub<GL(5,GF(13))| [5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5],[0,1,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,3],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,12,12,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,8,0] >;

C4×He33C4 in GAP, Magma, Sage, TeX

C_4\times {\rm He}_3\rtimes_3C_4
% in TeX

G:=Group("C4xHe3:3C4");
// GroupNames label

G:=SmallGroup(432,186);
// by ID

G=gap.SmallGroup(432,186);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,64,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^3=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽