Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C3×C6

Direct product G=N×Q with N=C2×Dic3 and Q=C3×C6
dρLabelID
Dic3×C62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C2×Dic3 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1(C3×C6) = C32×D6⋊C4φ: C3×C6/C32C2 ⊆ Out C2×Dic3144(C2xDic3):1(C3xC6)432,474
(C2×Dic3)⋊2(C3×C6) = C32×C6.D4φ: C3×C6/C32C2 ⊆ Out C2×Dic372(C2xDic3):2(C3xC6)432,479
(C2×Dic3)⋊3(C3×C6) = C32×D42S3φ: C3×C6/C32C2 ⊆ Out C2×Dic372(C2xDic3):3(C3xC6)432,705
(C2×Dic3)⋊4(C3×C6) = C3×C6×C3⋊D4φ: C3×C6/C32C2 ⊆ Out C2×Dic372(C2xDic3):4(C3xC6)432,709
(C2×Dic3)⋊5(C3×C6) = S3×C6×C12φ: trivial image144(C2xDic3):5(C3xC6)432,701

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1(C3×C6) = C32×Dic3⋊C4φ: C3×C6/C32C2 ⊆ Out C2×Dic3144(C2xDic3).1(C3xC6)432,472
(C2×Dic3).2(C3×C6) = C32×C4⋊Dic3φ: C3×C6/C32C2 ⊆ Out C2×Dic3144(C2xDic3).2(C3xC6)432,473
(C2×Dic3).3(C3×C6) = C3×C6×Dic6φ: C3×C6/C32C2 ⊆ Out C2×Dic3144(C2xDic3).3(C3xC6)432,700
(C2×Dic3).4(C3×C6) = Dic3×C3×C12φ: trivial image144(C2xDic3).4(C3xC6)432,471

׿
×
𝔽