Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C3xC6

Direct product G=NxQ with N=C2xDic3 and Q=C3xC6
dρLabelID
Dic3xC62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C2xDic3 and Q=C3xC6
extensionφ:Q→Out NdρLabelID
(C2xDic3):1(C3xC6) = C32xD6:C4φ: C3xC6/C32C2 ⊆ Out C2xDic3144(C2xDic3):1(C3xC6)432,474
(C2xDic3):2(C3xC6) = C32xC6.D4φ: C3xC6/C32C2 ⊆ Out C2xDic372(C2xDic3):2(C3xC6)432,479
(C2xDic3):3(C3xC6) = C32xD4:2S3φ: C3xC6/C32C2 ⊆ Out C2xDic372(C2xDic3):3(C3xC6)432,705
(C2xDic3):4(C3xC6) = C3xC6xC3:D4φ: C3xC6/C32C2 ⊆ Out C2xDic372(C2xDic3):4(C3xC6)432,709
(C2xDic3):5(C3xC6) = S3xC6xC12φ: trivial image144(C2xDic3):5(C3xC6)432,701

Non-split extensions G=N.Q with N=C2xDic3 and Q=C3xC6
extensionφ:Q→Out NdρLabelID
(C2xDic3).1(C3xC6) = C32xDic3:C4φ: C3xC6/C32C2 ⊆ Out C2xDic3144(C2xDic3).1(C3xC6)432,472
(C2xDic3).2(C3xC6) = C32xC4:Dic3φ: C3xC6/C32C2 ⊆ Out C2xDic3144(C2xDic3).2(C3xC6)432,473
(C2xDic3).3(C3xC6) = C3xC6xDic6φ: C3xC6/C32C2 ⊆ Out C2xDic3144(C2xDic3).3(C3xC6)432,700
(C2xDic3).4(C3xC6) = Dic3xC3xC12φ: trivial image144(C2xDic3).4(C3xC6)432,471

׿
x
:
Z
F
o
wr
Q
<