Extensions 1→N→G→Q→1 with N=Dic3 and Q=C2×C3⋊S3

Direct product G=N×Q with N=Dic3 and Q=C2×C3⋊S3
dρLabelID
C2×Dic3×C3⋊S3144C2xDic3xC3:S3432,677

Semidirect products G=N:Q with N=Dic3 and Q=C2×C3⋊S3
extensionφ:Q→Out NdρLabelID
Dic31(C2×C3⋊S3) = C3⋊S3×C3⋊D4φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out Dic372Dic3:1(C2xC3:S3)432,685
Dic32(C2×C3⋊S3) = C6223D6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out Dic336Dic3:2(C2xC3:S3)432,686
Dic33(C2×C3⋊S3) = S3×C12⋊S3φ: C2×C3⋊S3/C3×C6C2 ⊆ Out Dic372Dic3:3(C2xC3:S3)432,671
Dic34(C2×C3⋊S3) = C2×C338D4φ: C2×C3⋊S3/C3×C6C2 ⊆ Out Dic372Dic3:4(C2xC3:S3)432,682
Dic35(C2×C3⋊S3) = C4×S3×C3⋊S3φ: trivial image72Dic3:5(C2xC3:S3)432,670
Dic36(C2×C3⋊S3) = C2×C338(C2×C4)φ: trivial image72Dic3:6(C2xC3:S3)432,679

Non-split extensions G=N.Q with N=Dic3 and Q=C2×C3⋊S3
extensionφ:Q→Out NdρLabelID
Dic3.1(C2×C3⋊S3) = C3⋊S3×Dic6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out Dic3144Dic3.1(C2xC3:S3)432,663
Dic3.2(C2×C3⋊S3) = C12.39S32φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out Dic372Dic3.2(C2xC3:S3)432,664
Dic3.3(C2×C3⋊S3) = C12.40S32φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out Dic372Dic3.3(C2xC3:S3)432,665
Dic3.4(C2×C3⋊S3) = C329(S3×Q8)φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out Dic372Dic3.4(C2xC3:S3)432,666
Dic3.5(C2×C3⋊S3) = C62.90D6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out Dic372Dic3.5(C2xC3:S3)432,675
Dic3.6(C2×C3⋊S3) = C62.91D6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out Dic372Dic3.6(C2xC3:S3)432,676
Dic3.7(C2×C3⋊S3) = S3×C324Q8φ: C2×C3⋊S3/C3×C6C2 ⊆ Out Dic3144Dic3.7(C2xC3:S3)432,660
Dic3.8(C2×C3⋊S3) = C12.73S32φ: C2×C3⋊S3/C3×C6C2 ⊆ Out Dic372Dic3.8(C2xC3:S3)432,667
Dic3.9(C2×C3⋊S3) = C62.93D6φ: C2×C3⋊S3/C3×C6C2 ⊆ Out Dic372Dic3.9(C2xC3:S3)432,678
Dic3.10(C2×C3⋊S3) = C2×C334Q8φ: C2×C3⋊S3/C3×C6C2 ⊆ Out Dic3144Dic3.10(C2xC3:S3)432,683
Dic3.11(C2×C3⋊S3) = C12.57S32φ: trivial image144Dic3.11(C2xC3:S3)432,668
Dic3.12(C2×C3⋊S3) = C12.58S32φ: trivial image72Dic3.12(C2xC3:S3)432,669

׿
×
𝔽