direct product, metabelian, supersoluble, monomial, A-group, rational
Aliases: C2×C3⋊S3, C6⋊S3, C3⋊2D6, C32⋊3C22, (C3×C6)⋊2C2, SmallGroup(36,13)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3⋊S3 — C2×C3⋊S3 |
C32 — C2×C3⋊S3 |
Generators and relations for C2×C3⋊S3
G = < a,b,c,d | a2=b3=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >
Character table of C2×C3⋊S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | |
size | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | 1 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | 1 | 1 | 1 | -2 | orthogonal lifted from D6 |
ρ9 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | 1 | -2 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
(1 11)(2 12)(3 10)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 5 8)(2 6 9)(3 4 7)(10 13 16)(11 14 17)(12 15 18)
(1 11)(2 10)(3 12)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)
G:=sub<Sym(18)| (1,11)(2,12)(3,10)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,8)(2,6,9)(3,4,7)(10,13,16)(11,14,17)(12,15,18), (1,11)(2,10)(3,12)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)>;
G:=Group( (1,11)(2,12)(3,10)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,8)(2,6,9)(3,4,7)(10,13,16)(11,14,17)(12,15,18), (1,11)(2,10)(3,12)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13) );
G=PermutationGroup([[(1,11),(2,12),(3,10),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,5,8),(2,6,9),(3,4,7),(10,13,16),(11,14,17),(12,15,18)], [(1,11),(2,10),(3,12),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13)]])
G:=TransitiveGroup(18,12);
C2×C3⋊S3 is a maximal subgroup of
C6.D6 C3⋊D12 C12⋊S3 C32⋊7D4 C2×S32 C6.6S4
C2×C3⋊S3 is a maximal quotient of C32⋊4Q8 C12⋊S3 C32⋊7D4
Matrix representation of C2×C3⋊S3 ►in GL4(ℤ) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 1 |
0 | 0 | -1 | 0 |
-1 | -1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | 1 | -1 |
1 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,Integers())| [1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1],[1,0,0,0,0,1,0,0,0,0,-1,-1,0,0,1,0],[-1,1,0,0,-1,0,0,0,0,0,0,1,0,0,-1,-1],[1,-1,0,0,0,-1,0,0,0,0,0,1,0,0,1,0] >;
C2×C3⋊S3 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes S_3
% in TeX
G:=Group("C2xC3:S3");
// GroupNames label
G:=SmallGroup(36,13);
// by ID
G=gap.SmallGroup(36,13);
# by ID
G:=PCGroup([4,-2,-2,-3,-3,98,387]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C2×C3⋊S3 in TeX
Character table of C2×C3⋊S3 in TeX