Extensions 1→N→G→Q→1 with N=C3×D4 and Q=C3⋊S3

Direct product G=N×Q with N=C3×D4 and Q=C3⋊S3
dρLabelID
C3×D4×C3⋊S372C3xD4xC3:S3432,714

Semidirect products G=N:Q with N=C3×D4 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1(C3⋊S3) = C3315D8φ: C3⋊S3/C32C2 ⊆ Out C3×D4216(C3xD4):1(C3:S3)432,507
(C3×D4)⋊2(C3⋊S3) = D4×C33⋊C2φ: C3⋊S3/C32C2 ⊆ Out C3×D4108(C3xD4):2(C3:S3)432,724
(C3×D4)⋊3(C3⋊S3) = C62.100D6φ: C3⋊S3/C32C2 ⊆ Out C3×D4216(C3xD4):3(C3:S3)432,725
(C3×D4)⋊4(C3⋊S3) = C3×C327D8φ: C3⋊S3/C32C2 ⊆ Out C3×D472(C3xD4):4(C3:S3)432,491
(C3×D4)⋊5(C3⋊S3) = C3×C12.D6φ: trivial image72(C3xD4):5(C3:S3)432,715

Non-split extensions G=N.Q with N=C3×D4 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C3×D4).1(C3⋊S3) = C36.17D6φ: C3⋊S3/C32C2 ⊆ Out C3×D4216(C3xD4).1(C3:S3)432,190
(C3×D4).2(C3⋊S3) = C36.18D6φ: C3⋊S3/C32C2 ⊆ Out C3×D4216(C3xD4).2(C3:S3)432,191
(C3×D4).3(C3⋊S3) = D4×C9⋊S3φ: C3⋊S3/C32C2 ⊆ Out C3×D4108(C3xD4).3(C3:S3)432,388
(C3×D4).4(C3⋊S3) = C36.27D6φ: C3⋊S3/C32C2 ⊆ Out C3×D4216(C3xD4).4(C3:S3)432,389
(C3×D4).5(C3⋊S3) = C3324SD16φ: C3⋊S3/C32C2 ⊆ Out C3×D4216(C3xD4).5(C3:S3)432,508
(C3×D4).6(C3⋊S3) = He37D8φ: C3⋊S3/C32C2 ⊆ Out C3×D4726(C3xD4).6(C3:S3)432,192
(C3×D4).7(C3⋊S3) = He39SD16φ: C3⋊S3/C32C2 ⊆ Out C3×D4726(C3xD4).7(C3:S3)432,193
(C3×D4).8(C3⋊S3) = C3×C329SD16φ: C3⋊S3/C32C2 ⊆ Out C3×D472(C3xD4).8(C3:S3)432,492
(C3×D4).9(C3⋊S3) = D4×He3⋊C2φ: trivial image366(C3xD4).9(C3:S3)432,390
(C3×D4).10(C3⋊S3) = C62.16D6φ: trivial image726(C3xD4).10(C3:S3)432,391

׿
×
𝔽