direct product, metabelian, supersoluble, monomial
Aliases: C3×D4×C3⋊S3, C62⋊25D6, C12⋊2(S3×C6), (C3×C12)⋊15D6, C33⋊33(C2×D4), C62⋊12(C2×C6), (D4×C32)⋊9S3, (D4×C33)⋊6C2, C12⋊S3⋊12C6, C32⋊15(C6×D4), C32⋊24(S3×D4), C32⋊7D4⋊7C6, (D4×C32)⋊11C6, (C3×C62)⋊8C22, (C32×C12)⋊8C22, (C32×C6).89C23, C3⋊4(C3×S3×D4), C4⋊1(C6×C3⋊S3), (C4×C3⋊S3)⋊8C6, C12⋊6(C2×C3⋊S3), (C2×C6)⋊7(S3×C6), C6.56(S3×C2×C6), (C3×C12)⋊8(C2×C6), (C3×D4)⋊2(C3×S3), C22⋊3(C6×C3⋊S3), (C12×C3⋊S3)⋊10C2, (C6×C3⋊S3)⋊22C22, (C22×C3⋊S3)⋊11C6, C3⋊Dic3⋊10(C2×C6), (C3×C12⋊S3)⋊14C2, (C3×C32⋊7D4)⋊9C2, C6.56(C22×C3⋊S3), (C3×C6).63(C22×C6), (C3×C6).178(C22×S3), (C3×C3⋊Dic3)⋊24C22, (C2×C6×C3⋊S3)⋊9C2, C2.6(C2×C6×C3⋊S3), (C2×C6)⋊7(C2×C3⋊S3), (C2×C3⋊S3)⋊10(C2×C6), SmallGroup(432,714)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — C32×C6 — C6×C3⋊S3 — C2×C6×C3⋊S3 — C3×D4×C3⋊S3 |
Generators and relations for C3×D4×C3⋊S3
G = < a,b,c,d,e,f | a3=b4=c2=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=d-1, fef=e-1 >
Subgroups: 1380 in 388 conjugacy classes, 98 normal (26 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, D4, C23, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C3×D4, C3×D4, C22×S3, C22×C6, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C2×C3⋊S3, C62, C62, S3×D4, C6×D4, C3×C3⋊S3, C3×C3⋊S3, C32×C6, C32×C6, S3×C12, C3×D12, C3×C3⋊D4, C4×C3⋊S3, C12⋊S3, C32⋊7D4, D4×C32, D4×C32, D4×C32, S3×C2×C6, C22×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, C6×C3⋊S3, C6×C3⋊S3, C3×C62, C3×S3×D4, D4×C3⋊S3, C12×C3⋊S3, C3×C12⋊S3, C3×C32⋊7D4, D4×C33, C2×C6×C3⋊S3, C3×D4×C3⋊S3
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3×D4, C22×S3, C22×C6, S3×C6, C2×C3⋊S3, S3×D4, C6×D4, C3×C3⋊S3, S3×C2×C6, C22×C3⋊S3, C6×C3⋊S3, C3×S3×D4, D4×C3⋊S3, C2×C6×C3⋊S3, C3×D4×C3⋊S3
(1 29 7)(2 30 8)(3 31 5)(4 32 6)(9 55 61)(10 56 62)(11 53 63)(12 54 64)(13 37 41)(14 38 42)(15 39 43)(16 40 44)(17 72 49)(18 69 50)(19 70 51)(20 71 52)(21 59 34)(22 60 35)(23 57 36)(24 58 33)(25 45 66)(26 46 67)(27 47 68)(28 48 65)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 28)(26 27)(29 32)(30 31)(33 36)(34 35)(37 38)(39 40)(41 42)(43 44)(45 48)(46 47)(49 50)(51 52)(53 56)(54 55)(57 58)(59 60)(61 64)(62 63)(65 66)(67 68)(69 72)(70 71)
(1 7 29)(2 8 30)(3 5 31)(4 6 32)(9 55 61)(10 56 62)(11 53 63)(12 54 64)(13 41 37)(14 42 38)(15 43 39)(16 44 40)(17 72 49)(18 69 50)(19 70 51)(20 71 52)(21 34 59)(22 35 60)(23 36 57)(24 33 58)(25 45 66)(26 46 67)(27 47 68)(28 48 65)
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 35 42)(6 36 43)(7 33 44)(8 34 41)(9 47 50)(10 48 51)(11 45 52)(12 46 49)(17 54 67)(18 55 68)(19 56 65)(20 53 66)(25 71 63)(26 72 64)(27 69 61)(28 70 62)(29 58 40)(30 59 37)(31 60 38)(32 57 39)
(1 11)(2 12)(3 9)(4 10)(5 61)(6 62)(7 63)(8 64)(13 46)(14 47)(15 48)(16 45)(17 59)(18 60)(19 57)(20 58)(21 49)(22 50)(23 51)(24 52)(25 44)(26 41)(27 42)(28 43)(29 53)(30 54)(31 55)(32 56)(33 71)(34 72)(35 69)(36 70)(37 67)(38 68)(39 65)(40 66)
G:=sub<Sym(72)| (1,29,7)(2,30,8)(3,31,5)(4,32,6)(9,55,61)(10,56,62)(11,53,63)(12,54,64)(13,37,41)(14,38,42)(15,39,43)(16,40,44)(17,72,49)(18,69,50)(19,70,51)(20,71,52)(21,59,34)(22,60,35)(23,57,36)(24,58,33)(25,45,66)(26,46,67)(27,47,68)(28,48,65), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,38)(39,40)(41,42)(43,44)(45,48)(46,47)(49,50)(51,52)(53,56)(54,55)(57,58)(59,60)(61,64)(62,63)(65,66)(67,68)(69,72)(70,71), (1,7,29)(2,8,30)(3,5,31)(4,6,32)(9,55,61)(10,56,62)(11,53,63)(12,54,64)(13,41,37)(14,42,38)(15,43,39)(16,44,40)(17,72,49)(18,69,50)(19,70,51)(20,71,52)(21,34,59)(22,35,60)(23,36,57)(24,33,58)(25,45,66)(26,46,67)(27,47,68)(28,48,65), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,35,42)(6,36,43)(7,33,44)(8,34,41)(9,47,50)(10,48,51)(11,45,52)(12,46,49)(17,54,67)(18,55,68)(19,56,65)(20,53,66)(25,71,63)(26,72,64)(27,69,61)(28,70,62)(29,58,40)(30,59,37)(31,60,38)(32,57,39), (1,11)(2,12)(3,9)(4,10)(5,61)(6,62)(7,63)(8,64)(13,46)(14,47)(15,48)(16,45)(17,59)(18,60)(19,57)(20,58)(21,49)(22,50)(23,51)(24,52)(25,44)(26,41)(27,42)(28,43)(29,53)(30,54)(31,55)(32,56)(33,71)(34,72)(35,69)(36,70)(37,67)(38,68)(39,65)(40,66)>;
G:=Group( (1,29,7)(2,30,8)(3,31,5)(4,32,6)(9,55,61)(10,56,62)(11,53,63)(12,54,64)(13,37,41)(14,38,42)(15,39,43)(16,40,44)(17,72,49)(18,69,50)(19,70,51)(20,71,52)(21,59,34)(22,60,35)(23,57,36)(24,58,33)(25,45,66)(26,46,67)(27,47,68)(28,48,65), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,38)(39,40)(41,42)(43,44)(45,48)(46,47)(49,50)(51,52)(53,56)(54,55)(57,58)(59,60)(61,64)(62,63)(65,66)(67,68)(69,72)(70,71), (1,7,29)(2,8,30)(3,5,31)(4,6,32)(9,55,61)(10,56,62)(11,53,63)(12,54,64)(13,41,37)(14,42,38)(15,43,39)(16,44,40)(17,72,49)(18,69,50)(19,70,51)(20,71,52)(21,34,59)(22,35,60)(23,36,57)(24,33,58)(25,45,66)(26,46,67)(27,47,68)(28,48,65), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,35,42)(6,36,43)(7,33,44)(8,34,41)(9,47,50)(10,48,51)(11,45,52)(12,46,49)(17,54,67)(18,55,68)(19,56,65)(20,53,66)(25,71,63)(26,72,64)(27,69,61)(28,70,62)(29,58,40)(30,59,37)(31,60,38)(32,57,39), (1,11)(2,12)(3,9)(4,10)(5,61)(6,62)(7,63)(8,64)(13,46)(14,47)(15,48)(16,45)(17,59)(18,60)(19,57)(20,58)(21,49)(22,50)(23,51)(24,52)(25,44)(26,41)(27,42)(28,43)(29,53)(30,54)(31,55)(32,56)(33,71)(34,72)(35,69)(36,70)(37,67)(38,68)(39,65)(40,66) );
G=PermutationGroup([[(1,29,7),(2,30,8),(3,31,5),(4,32,6),(9,55,61),(10,56,62),(11,53,63),(12,54,64),(13,37,41),(14,38,42),(15,39,43),(16,40,44),(17,72,49),(18,69,50),(19,70,51),(20,71,52),(21,59,34),(22,60,35),(23,57,36),(24,58,33),(25,45,66),(26,46,67),(27,47,68),(28,48,65)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,28),(26,27),(29,32),(30,31),(33,36),(34,35),(37,38),(39,40),(41,42),(43,44),(45,48),(46,47),(49,50),(51,52),(53,56),(54,55),(57,58),(59,60),(61,64),(62,63),(65,66),(67,68),(69,72),(70,71)], [(1,7,29),(2,8,30),(3,5,31),(4,6,32),(9,55,61),(10,56,62),(11,53,63),(12,54,64),(13,41,37),(14,42,38),(15,43,39),(16,44,40),(17,72,49),(18,69,50),(19,70,51),(20,71,52),(21,34,59),(22,35,60),(23,36,57),(24,33,58),(25,45,66),(26,46,67),(27,47,68),(28,48,65)], [(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,35,42),(6,36,43),(7,33,44),(8,34,41),(9,47,50),(10,48,51),(11,45,52),(12,46,49),(17,54,67),(18,55,68),(19,56,65),(20,53,66),(25,71,63),(26,72,64),(27,69,61),(28,70,62),(29,58,40),(30,59,37),(31,60,38),(32,57,39)], [(1,11),(2,12),(3,9),(4,10),(5,61),(6,62),(7,63),(8,64),(13,46),(14,47),(15,48),(16,45),(17,59),(18,60),(19,57),(20,58),(21,49),(22,50),(23,51),(24,52),(25,44),(26,41),(27,42),(28,43),(29,53),(30,54),(31,55),(32,56),(33,71),(34,72),(35,69),(36,70),(37,67),(38,68),(39,65),(40,66)]])
90 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | ··· | 3N | 4A | 4B | 6A | 6B | 6C | ··· | 6R | 6S | ··· | 6AP | 6AQ | 6AR | 6AS | 6AT | 6AU | 6AV | 6AW | 6AX | 12A | 12B | 12C | ··· | 12N | 12O | 12P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 2 | 2 | 9 | 9 | 18 | 18 | 1 | 1 | 2 | ··· | 2 | 2 | 18 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 9 | 9 | 9 | 9 | 18 | 18 | 18 | 18 | 2 | 2 | 4 | ··· | 4 | 18 | 18 |
90 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | S3 | D4 | D6 | D6 | C3×S3 | C3×D4 | S3×C6 | S3×C6 | S3×D4 | C3×S3×D4 |
kernel | C3×D4×C3⋊S3 | C12×C3⋊S3 | C3×C12⋊S3 | C3×C32⋊7D4 | D4×C33 | C2×C6×C3⋊S3 | D4×C3⋊S3 | C4×C3⋊S3 | C12⋊S3 | C32⋊7D4 | D4×C32 | C22×C3⋊S3 | D4×C32 | C3×C3⋊S3 | C3×C12 | C62 | C3×D4 | C3⋊S3 | C12 | C2×C6 | C32 | C3 |
# reps | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 4 | 8 | 8 | 4 | 8 | 16 | 4 | 8 |
Matrix representation of C3×D4×C3⋊S3 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 11 |
0 | 0 | 0 | 0 | 1 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 11 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 3 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 3 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,11,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,11,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,3,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,3,3,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,2,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;
C3×D4×C3⋊S3 in GAP, Magma, Sage, TeX
C_3\times D_4\times C_3\rtimes S_3
% in TeX
G:=Group("C3xD4xC3:S3");
// GroupNames label
G:=SmallGroup(432,714);
// by ID
G=gap.SmallGroup(432,714);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,303,4037,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^4=c^2=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations