Extensions 1→N→G→Q→1 with N=C18 and Q=S4

Direct product G=N×Q with N=C18 and Q=S4

Semidirect products G=N:Q with N=C18 and Q=S4
extensionφ:Q→Aut NdρLabelID
C18⋊S4 = C2×C9⋊S4φ: S4/A4C2 ⊆ Aut C18546+C18:S4432,536

Non-split extensions G=N.Q with N=C18 and Q=S4
extensionφ:Q→Aut NdρLabelID
C18.1S4 = Q8.D27φ: S4/A4C2 ⊆ Aut C184324-C18.1S4432,37
C18.2S4 = Q8⋊D27φ: S4/A4C2 ⊆ Aut C182164+C18.2S4432,38
C18.3S4 = C18.S4φ: S4/A4C2 ⊆ Aut C181086-C18.3S4432,39
C18.4S4 = C2×C9.S4φ: S4/A4C2 ⊆ Aut C18546+C18.4S4432,224
C18.5S4 = C18.5S4φ: S4/A4C2 ⊆ Aut C181444-C18.5S4432,252
C18.6S4 = C18.6S4φ: S4/A4C2 ⊆ Aut C18724+C18.6S4432,253
C18.7S4 = A4⋊Dic9φ: S4/A4C2 ⊆ Aut C181086-C18.7S4432,254
C18.8S4 = C9×CSU2(𝔽3)central extension (φ=1)1442C18.8S4432,240
C18.9S4 = C9×GL2(𝔽3)central extension (φ=1)722C18.9S4432,241
C18.10S4 = C9×A4⋊C4central extension (φ=1)1083C18.10S4432,242