non-abelian, soluble, monomial, rational
Aliases: S4, PGL2(𝔽3), SO3(𝔽3), PSO3(𝔽3), PO3(𝔽3), AGL2(𝔽2), ASL2(𝔽2), AΓL1(𝔽4), PU2(𝔽3), CSO3(𝔽3), A4⋊C2, C22⋊S3, Sym4, Σ4, Aut(Q8), Hol(C22), group of symmetries of a regular tetrahedron, group of rotations of a cube (and its dual - regular octahedron), SmallGroup(24,12)
Series: Derived ►Chief ►Lower central ►Upper central
A4 — S4 |
Generators and relations for S4
G = < a,b,c,d | a2=b2=c3=d2=1, cac-1=dad=ab=ba, cbc-1=a, bd=db, dcd=c-1 >
Character table of S4
class | 1 | 2A | 2B | 3 | 4 | |
size | 1 | 3 | 6 | 8 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | -1 | 0 | orthogonal lifted from S3 |
ρ4 | 3 | -1 | -1 | 0 | 1 | orthogonal faithful |
ρ5 | 3 | -1 | 1 | 0 | -1 | orthogonal faithful |
(1 2)(3 4)
(1 3)(2 4)
(2 3 4)
(2 4)
G:=sub<Sym(4)| (1,2)(3,4), (1,3)(2,4), (2,3,4), (2,4)>;
G:=Group( (1,2)(3,4), (1,3)(2,4), (2,3,4), (2,4) );
G=PermutationGroup([[(1,2),(3,4)], [(1,3),(2,4)], [(2,3,4)], [(2,4)]])
G:=TransitiveGroup(4,5);
(1 4)(2 5)
(2 5)(3 6)
(1 2 3)(4 5 6)
(2 3)(5 6)
G:=sub<Sym(6)| (1,4)(2,5), (2,5)(3,6), (1,2,3)(4,5,6), (2,3)(5,6)>;
G:=Group( (1,4)(2,5), (2,5)(3,6), (1,2,3)(4,5,6), (2,3)(5,6) );
G=PermutationGroup([[(1,4),(2,5)], [(2,5),(3,6)], [(1,2,3),(4,5,6)], [(2,3),(5,6)]])
G:=TransitiveGroup(6,7);
(1 4)(2 5)
(2 5)(3 6)
(1 2 3)(4 5 6)
(1 4)(2 6)(3 5)
G:=sub<Sym(6)| (1,4)(2,5), (2,5)(3,6), (1,2,3)(4,5,6), (1,4)(2,6)(3,5)>;
G:=Group( (1,4)(2,5), (2,5)(3,6), (1,2,3)(4,5,6), (1,4)(2,6)(3,5) );
G=PermutationGroup([[(1,4),(2,5)], [(2,5),(3,6)], [(1,2,3),(4,5,6)], [(1,4),(2,6),(3,5)]])
G:=TransitiveGroup(6,8);
(1 7)(2 4)(3 5)(6 8)
(1 8)(2 5)(3 4)(6 7)
(3 4 5)(6 7 8)
(1 2)(3 7)(4 6)(5 8)
G:=sub<Sym(8)| (1,7)(2,4)(3,5)(6,8), (1,8)(2,5)(3,4)(6,7), (3,4,5)(6,7,8), (1,2)(3,7)(4,6)(5,8)>;
G:=Group( (1,7)(2,4)(3,5)(6,8), (1,8)(2,5)(3,4)(6,7), (3,4,5)(6,7,8), (1,2)(3,7)(4,6)(5,8) );
G=PermutationGroup([[(1,7),(2,4),(3,5),(6,8)], [(1,8),(2,5),(3,4),(6,7)], [(3,4,5),(6,7,8)], [(1,2),(3,7),(4,6),(5,8)]])
G:=TransitiveGroup(8,14);
(1 10)(2 5)(3 7)(4 8)(6 12)(9 11)
(1 8)(2 11)(3 6)(4 10)(5 9)(7 12)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(2 3)(4 10)(5 12)(6 11)(7 9)
G:=sub<Sym(12)| (1,10)(2,5)(3,7)(4,8)(6,12)(9,11), (1,8)(2,11)(3,6)(4,10)(5,9)(7,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (2,3)(4,10)(5,12)(6,11)(7,9)>;
G:=Group( (1,10)(2,5)(3,7)(4,8)(6,12)(9,11), (1,8)(2,11)(3,6)(4,10)(5,9)(7,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (2,3)(4,10)(5,12)(6,11)(7,9) );
G=PermutationGroup([[(1,10),(2,5),(3,7),(4,8),(6,12),(9,11)], [(1,8),(2,11),(3,6),(4,10),(5,9),(7,12)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(2,3),(4,10),(5,12),(6,11),(7,9)]])
G:=TransitiveGroup(12,8);
(1 7)(3 9)(4 12)(5 10)
(1 7)(2 8)(5 10)(6 11)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(1 11)(2 10)(3 12)(4 9)(5 8)(6 7)
G:=sub<Sym(12)| (1,7)(3,9)(4,12)(5,10), (1,7)(2,8)(5,10)(6,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,11)(2,10)(3,12)(4,9)(5,8)(6,7)>;
G:=Group( (1,7)(3,9)(4,12)(5,10), (1,7)(2,8)(5,10)(6,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,11)(2,10)(3,12)(4,9)(5,8)(6,7) );
G=PermutationGroup([[(1,7),(3,9),(4,12),(5,10)], [(1,7),(2,8),(5,10),(6,11)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(1,11),(2,10),(3,12),(4,9),(5,8),(6,7)]])
G:=TransitiveGroup(12,9);
(1 15)(2 12)(3 21)(4 24)(5 9)(6 16)(7 23)(8 17)(10 14)(11 19)(13 20)(18 22)
(1 19)(2 13)(3 10)(4 17)(5 22)(6 7)(8 24)(9 18)(11 15)(12 20)(14 21)(16 23)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 6)(2 5)(3 4)(7 19)(8 21)(9 20)(10 17)(11 16)(12 18)(13 22)(14 24)(15 23)
G:=sub<Sym(24)| (1,15)(2,12)(3,21)(4,24)(5,9)(6,16)(7,23)(8,17)(10,14)(11,19)(13,20)(18,22), (1,19)(2,13)(3,10)(4,17)(5,22)(6,7)(8,24)(9,18)(11,15)(12,20)(14,21)(16,23), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,6)(2,5)(3,4)(7,19)(8,21)(9,20)(10,17)(11,16)(12,18)(13,22)(14,24)(15,23)>;
G:=Group( (1,15)(2,12)(3,21)(4,24)(5,9)(6,16)(7,23)(8,17)(10,14)(11,19)(13,20)(18,22), (1,19)(2,13)(3,10)(4,17)(5,22)(6,7)(8,24)(9,18)(11,15)(12,20)(14,21)(16,23), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,6)(2,5)(3,4)(7,19)(8,21)(9,20)(10,17)(11,16)(12,18)(13,22)(14,24)(15,23) );
G=PermutationGroup([[(1,15),(2,12),(3,21),(4,24),(5,9),(6,16),(7,23),(8,17),(10,14),(11,19),(13,20),(18,22)], [(1,19),(2,13),(3,10),(4,17),(5,22),(6,7),(8,24),(9,18),(11,15),(12,20),(14,21),(16,23)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,6),(2,5),(3,4),(7,19),(8,21),(9,20),(10,17),(11,16),(12,18),(13,22),(14,24),(15,23)]])
G:=TransitiveGroup(24,10);
S4 is a maximal subgroup of
C42⋊S3 C22⋊S4 S5 GL3(𝔽2) A6
Cp⋊S4: C3⋊S4 C5⋊S4 C7⋊S4 C11⋊S4 C13⋊S4 C17⋊S4 C19⋊S4 ...
S4 is a maximal quotient of
CSU2(𝔽3) GL2(𝔽3) A4⋊C4 C3.S4 C42⋊S3 C22⋊S4
Cp⋊S4: C3⋊S4 C5⋊S4 C7⋊S4 C11⋊S4 C13⋊S4 C17⋊S4 C19⋊S4 ...
action | f(x) | Disc(f) |
---|---|---|
4T5 | x4-x+1 | 229 |
6T7 | x6-x2-1 | 26·232 |
6T8 | x6-x4+2x2+2 | -213·54 |
8T14 | x8-24x6-18x5+143x4+202x3-26x2-82x-19 | 212·54·74·174·7392 |
12T8 | x12-2x10-2x9-2x8-8x7+x6+3x5+4x4-8x3-x2-x-1 | -212·832·1132·2835 |
12T9 | x12-24x10+209x8-784x6+1124x4-288x2+4 | 246·118·796 |
Matrix representation of S4 ►in GL3(ℤ) generated by
-1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | -1 |
1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | -1 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
-1 | 0 | 0 |
0 | 0 | -1 |
0 | -1 | 0 |
G:=sub<GL(3,Integers())| [-1,0,0,0,1,0,0,0,-1],[1,0,0,0,-1,0,0,0,-1],[0,0,1,1,0,0,0,1,0],[-1,0,0,0,0,-1,0,-1,0] >;
S4 in GAP, Magma, Sage, TeX
S_4
% in TeX
G:=Group("S4");
// GroupNames label
G:=SmallGroup(24,12);
// by ID
G=gap.SmallGroup(24,12);
# by ID
G:=PCGroup([4,-2,-3,-2,2,33,146,78,99,151]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^3=d^2=1,c*a*c^-1=d*a*d=a*b=b*a,c*b*c^-1=a,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export