Extensions 1→N→G→Q→1 with N=D6 and Q=C2xC3:S3

Direct product G=NxQ with N=D6 and Q=C2xC3:S3
dρLabelID
C22xS3xC3:S372C2^2xS3xC3:S3432,768

Semidirect products G=N:Q with N=D6 and Q=C2xC3:S3
extensionφ:Q→Out NdρLabelID
D6:1(C2xC3:S3) = C3:S3xD12φ: C2xC3:S3/C3:S3C2 ⊆ Out D672D6:1(C2xC3:S3)432,672
D6:2(C2xC3:S3) = C12:S32φ: C2xC3:S3/C3:S3C2 ⊆ Out D672D6:2(C2xC3:S3)432,673
D6:3(C2xC3:S3) = C3:S3xC3:D4φ: C2xC3:S3/C3:S3C2 ⊆ Out D672D6:3(C2xC3:S3)432,685
D6:4(C2xC3:S3) = C62:23D6φ: C2xC3:S3/C3:S3C2 ⊆ Out D636D6:4(C2xC3:S3)432,686
D6:5(C2xC3:S3) = C2xC33:6D4φ: C2xC3:S3/C3xC6C2 ⊆ Out D6144D6:5(C2xC3:S3)432,680
D6:6(C2xC3:S3) = C2xC33:7D4φ: C2xC3:S3/C3xC6C2 ⊆ Out D672D6:6(C2xC3:S3)432,681
D6:7(C2xC3:S3) = S3xC32:7D4φ: C2xC3:S3/C3xC6C2 ⊆ Out D672D6:7(C2xC3:S3)432,684

Non-split extensions G=N.Q with N=D6 and Q=C2xC3:S3
extensionφ:Q→Out NdρLabelID
D6.1(C2xC3:S3) = (C3xD12):S3φ: C2xC3:S3/C3:S3C2 ⊆ Out D6144D6.1(C2xC3:S3)432,661
D6.2(C2xC3:S3) = D12:(C3:S3)φ: C2xC3:S3/C3:S3C2 ⊆ Out D672D6.2(C2xC3:S3)432,662
D6.3(C2xC3:S3) = C62.90D6φ: C2xC3:S3/C3:S3C2 ⊆ Out D672D6.3(C2xC3:S3)432,675
D6.4(C2xC3:S3) = C62.91D6φ: C2xC3:S3/C3:S3C2 ⊆ Out D672D6.4(C2xC3:S3)432,676
D6.5(C2xC3:S3) = C12.73S32φ: C2xC3:S3/C3xC6C2 ⊆ Out D672D6.5(C2xC3:S3)432,667
D6.6(C2xC3:S3) = C12.57S32φ: C2xC3:S3/C3xC6C2 ⊆ Out D6144D6.6(C2xC3:S3)432,668
D6.7(C2xC3:S3) = C12.58S32φ: C2xC3:S3/C3xC6C2 ⊆ Out D672D6.7(C2xC3:S3)432,669
D6.8(C2xC3:S3) = S3xC32:4Q8φ: trivial image144D6.8(C2xC3:S3)432,660
D6.9(C2xC3:S3) = C4xS3xC3:S3φ: trivial image72D6.9(C2xC3:S3)432,670
D6.10(C2xC3:S3) = S3xC12:S3φ: trivial image72D6.10(C2xC3:S3)432,671
D6.11(C2xC3:S3) = C2xS3xC3:Dic3φ: trivial image144D6.11(C2xC3:S3)432,674

׿
x
:
Z
F
o
wr
Q
<